# Chapter 2 (Array-based lists) These data structures have common advantages and limitations: * constant-time access * resizing the array adds potentially non-trivial complexity, both in time and storage, as a new array generally must be created and the old array copied over. * arrays aren't dynamic, which means inserting or deleting in the middle of an array requires shifting all the following elements. With some careful management, the additional *amortised* complexity added by resizing isn't too bad. ## Array stack * Uses backing array *a*. * Typically, the array will be larger than necessary, so an element *n* is used to track the actual number of elements stored in the stack. * Add and remove requires shifting all the elements after i (O(n - i) complexity), ignoring potential calls to resize * Resizing is triggered when we run out of room in an add or when a remove brings us to the point where the array is more than 3n elements * Resizing creates a new array of size 2n and copies all the elements over; this then has complexity O(n). * The analysis of add and remove didn't consider cost of resize. * An amortised analysis is done instead that considers the cost of all calls to add and remove, given a sequence of *m* calls to either. * Lemma: if an empty ArrayStack is created and any sequence of *m* >= 1 calls to add and remove are performed, the total time spent in calls to resize is O(m).