/* Hamshield * Example: HandyTalkie * This is a simple example to demonstrate HamShield receive * and transmit functionality. * Connect the HamShield to your Arduino. Screw the antenna * into the HamShield RF jack. Plug a pair of headphones into * the HamShield. Connect the Arduino to wall power and then * to your computer via USB. After uploading this program to * your Arduino, open the Serial Monitor. Press the button on * the HamShield to begin setup. After setup is complete, type * your desired Tx/Rx frequency, in hertz, into the bar at the * top of the Serial Monitor and click the "Send" button. * To test with another HandyTalkie (HT), key up on your HT * and make sure you can hear it through the headphones * attached to the HamShield. Key up on the HamShield by * holding the button. */ #include // create object for radio HamShield radio; // To use non-standard pins, use the following initialization //HamShield radio(ncs_pin, clk_pin, dat_pin); #define LED_PIN 13 #define RSSI_REPORT_RATE_MS 5000 #define MIC_PIN 3 #define RESET_PIN A3 #define SWITCH_PIN 2 bool blinkState = false; bool currently_tx; uint32_t freq; unsigned long rssi_timeout; void setup() { // NOTE: if not using PWM out, it should be held low to avoid tx noise pinMode(MIC_PIN, OUTPUT); digitalWrite(MIC_PIN, LOW); // prep the switch pinMode(SWITCH_PIN, INPUT_PULLUP); // set up the reset control pin pinMode(RESET_PIN, OUTPUT); digitalWrite(RESET_PIN, LOW); // initialize serial communication Serial.begin(9600); Serial.println("press the switch or send any character to begin..."); while (digitalRead(SWITCH_PIN) && !Serial.available()); Serial.read(); // flush // let the AU ot of reset digitalWrite(RESET_PIN, HIGH); delay(5); // wait for device to come up Serial.println("beginning radio setup"); // verify connection Serial.println("Testing device connections..."); Serial.println(radio.testConnection() ? "RDA radio connection successful" : "RDA radio connection failed"); // initialize device Serial.println("Initializing I2C devices..."); radio.initialize(); // initializes automatically for UHF 12.5kHz channel Serial.println("setting default Radio configuration"); radio.dangerMode(); // set frequency Serial.println("changing frequency"); radio.setSQOff(); freq = 446000; radio.frequency(freq); // set to receive radio.setModeReceive(); currently_tx = false; Serial.print("config register is: "); Serial.println(radio.readCtlReg()); Serial.println(radio.readRSSI()); /* // set to transmit radio.setModeTransmit(); // maybe set PA bias voltage Serial.println("configured for transmit"); radio.setTxSourceMic(); */ radio.setRfPower(0); // configure Arduino LED for pinMode(LED_PIN, OUTPUT); rssi_timeout = 0; } void loop() { if (!digitalRead(SWITCH_PIN)) { if (!currently_tx) { currently_tx = true; // set to transmit radio.setModeTransmit(); Serial.println("Tx"); //radio.setTxSourceMic(); //radio.setRfPower(1); } } else if (currently_tx) { radio.setModeReceive(); currently_tx = false; Serial.println("Rx"); } if (Serial.available()) { if (Serial.peek() == 'r') { Serial.read(); digitalWrite(RESET_PIN, LOW); delay(1000); digitalWrite(RESET_PIN, HIGH); radio.initialize(); // initializes automatically for UHF 12.5kHz channel } else { Serial.setTimeout(40); freq = Serial.parseInt(); Serial.flush(); radio.frequency(freq); Serial.print("set frequency: "); Serial.println(freq); } } if (!currently_tx && (millis() - rssi_timeout) > RSSI_REPORT_RATE_MS) { Serial.println(radio.readRSSI()); rssi_timeout = millis(); } }