Remove unfinished examples

This commit is contained in:
nick6x 2016-08-26 15:02:40 -07:00
parent e65893402a
commit 6b775130d1
5 changed files with 0 additions and 583 deletions

View File

@ -1,283 +0,0 @@
// BlueHAM Proto01 Connection Guide
/**********************
**
** BlueHAM Proto01 <--> Arduino
** ADC_SCL A5
** ADC_DIO A4
** GND GND
** PWM_RF_CTL D9
**
** Setting Connections
** MODE -> GND
** SENB -> GND
** PDN -> 3.3V
** AVDD -> 5V (note this should be a beefy supply, could draw up to 4As)
**
**
**
** Pinout information for RadioPeripheral01 Prototype board
** GPIO0 -
** GPIO1 -
** GPIO2 - VHF_SEL
** GPIO3 - UHF_SEL
** GPIO4 - RX_EN
** GPIO5 - TX_EN
** GPIO6 -
** GPIO7 -
**************************/
// Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE implementation
// is used in I2Cdev.h
#include "Wire.h"
#include "HAMShield.h"
#include <Goertzel.h>
//typedef enum {
#define MAIN_S 0
#define RX_S 1
#define TX_S 2
#define FREQ_S 3
#define UHF_S 4
#define VHF_S 5
#define PWR_S 6
#define GPIO_S 7
//} menu_view;
int state;
/* goertzel routines */
int sensorPin = A0;
int led = 13;
const float TARGET_FREQUENCY = 2200;
const int N = 100;
const float THRESHOLD = 4000;
const float SAMPLING_FREQUENCY = 8900;
Goertzel goertzel = Goertzel(TARGET_FREQUENCY, N, SAMPLING_FREQUENCY);
// create object for RDA
HAMShield radio;
#define LED_PIN 13
bool blinkState = false;
void setup() {
// initialize serial communication
Serial.begin(115200);
Serial.println("beginning radio setup");
// join I2C bus (I2Cdev library doesn't do this automatically)
Wire.begin();
// verify connection
Serial.println("Testing device connections...");
Serial.println(radio.testConnection() ? "RDA radio connection successful" : "RDA radio connection failed");
// initialize device
Serial.println("Initializing I2C devices...");
radio.initialize(); // initializes automatically for UHF 12.5kHz channel
Serial.println("setting default Radio configuration");
// set frequency
Serial.println("changing frequency");
radio.setFrequency(446000); // in kHz
radio.setModeReceive();
// configure Arduino LED for
pinMode(LED_PIN, OUTPUT);
state = MAIN_S;
print_menu();
}
void loop() {
goertzel.sample(sensorPin);
float magnitude = goertzel.detect();
if(magnitude>THRESHOLD) digitalWrite(led, HIGH); //if found, enable led
else digitalWrite(led, LOW);
while (Serial.available()) {
if (state == FREQ_S) {
char freq_khz[6];
int i = 0;
while(i < 6) {
if (Serial.available()) {
freq_khz[i] = Serial.read();
i++;
}
}
// interpret frequency
uint32_t freq = 0;
i = 0;
while (i < 6) {
uint32_t temp = freq_khz[i] - '0';
for (int k = 5-i; k > 0; k--) {
temp = temp * 10;
}
freq += temp;
i++;
}
Serial.print("setting frequency to: ");
Serial.println(freq);
radio.setFrequency(freq);
state = MAIN_S;
} else if (state == PWR_S) {
uint8_t pwr_raw[3];
int i = 0;
while(i < 3) {
if (Serial.available()) {
pwr_raw[i] = Serial.read();
i++;
}
}
// interpret power
uint8_t pwr = 0;
i = 0;
while (i < 3) {
uint8_t temp = pwr_raw[i] - '0';
for (int k = 2-i; k > 0; k--) {
temp = temp * 10;
}
pwr += temp;
i++;
}
Serial.print("Setting power to: ");
Serial.println(pwr);
radio.setRfPower(pwr);
state = MAIN_S;
} else if (state == GPIO_S) {
uint8_t gpio_raw[2];
int i = 0;
while(i < 2) {
if (Serial.available()) {
gpio_raw[i] = Serial.read();
i++;
}
}
uint16_t gpio_pin = gpio_raw[0] - 48; // '0';
uint16_t gpio_mode = gpio_raw[1] - 48;
radio.setGpioMode(gpio_pin, gpio_mode);
state = MAIN_S;
} else {
char action = Serial.read();
if (action == 'r') { // get current state
state = RX_S;
} else if (action == 't') {
state = TX_S;
} else if (action == 'f') {
state = FREQ_S;
} else if (action == 'u') {
state = UHF_S;
} else if (action == 'v') {
state = VHF_S;
} else if (action == '1') {
turn_on(state);
state = MAIN_S;
} else if (action == '0') {
turn_off(state);
state = MAIN_S;
} else if (action == 'p') {
state = PWR_S;
} else if (action == 'g') {
state = GPIO_S;
} else if (action == 's') {
int16_t rssi = radio.readRSSI();
Serial.print("rssi: ");
Serial.println(rssi);
} else if (action == 'i') {
int16_t vssi = radio.readVSSI();
Serial.print("vssi: ");
Serial.println(vssi);
}
Serial.println(action);
}
Serial.flush();
print_menu();
}
}
void turn_off(int dev) {
switch (dev) {
case RX_S:
radio.setRX(0);
break;
case TX_S:
radio.setTX(0);
break;
case UHF_S:
radio.setGpioMode(3, 3); // set GPIO3 high (uhf is active low)
break;
case VHF_S:
radio.setGpioMode(2, 3); // set GPIO2 high (vhf is active low)
break;
default:
break;
}
}
void turn_on(int dev) {
switch (dev) {
case RX_S:
radio.setRX(1);
break;
case TX_S:
radio.setTX(1);
break;
case UHF_S:
radio.setGpioMode(3, 2); // set GPIO3 low (uhf is active low)
break;
case VHF_S:
radio.setGpioMode(2, 2); // set GPIO2 low (uhf is active low)
break;
default:
break;
}
}
void print_menu() {
Serial.println("MENU");
switch (state) {
case MAIN_S:
Serial.println("select step: [r]x, [t]x, [f]req, [u]hf, [v]hf, [p]wr, [g]pio control, r[s]si, vss[i] ...");
break;
case RX_S:
Serial.println("enter 1 to turn on rx, 0 to turn off rx");
break;
case TX_S:
Serial.println("enter 1 to turn on tx, 0 to turn off tx");
break;
case FREQ_S:
Serial.println("enter frequency in kHz (ffffff)");
break;
case UHF_S:
Serial.println("enter 1 to turn on uhf, 0 to turn off uhf");
break;
case VHF_S:
Serial.println("enter 1 to turn on vhf, 0 to turn off vhf");
break;
case PWR_S:
Serial.println("enter power (raw) (ppp)");
break;
case GPIO_S:
Serial.println("enter GPIO pin and control (no spaces, eg pin 1 mode 3 is 13");
Serial.println("modes 0 - HiZ, 1 - FCN, 2 - Low, 3 - Hi");
break;
default:
state = MAIN_S;
break;
}
}

View File

@ -1,95 +0,0 @@
/*
Indentifier
Arduino audio overlay example
*/
#include <HamShield.h>
#define DOT 100
#define PWM_PIN 3
#define RESET_PIN A3
#define SWITCH_PIN 2
HamShield radio;
const char *bascii = "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.,?'!/()&:;=+-_\"$@",
*bitu[] = { ".-","-...","-.-.","-..",".","..-.","--.","....","..",".---","-.-",".-..","--","-.","---",".--.","--.-",".-.","...","-","..-","...-",".--","-..-","-.--","--..","-----",".----","..---","...--","....-",".....","-....","--...","---..","----.",".-.-.-","--..--","..--..",".----.","-.-.--","-..-.","-.--.","-.--.-",".-...","---...","-.-.-.","-...-",".-.-.","-....-","..--.-",".-..-.","...-..-",".--.-."
};
const char *callsign = {"1ZZ9ZZ/B"} ;
char morsebuffer[8];
void setup() {
// NOTE: if not using PWM out, it should be held low to avoid tx noise
pinMode(PWM_PIN, OUTPUT);
digitalWrite(PWM_PIN, LOW);
// prep the switch
pinMode(SWITCH_PIN, INPUT_PULLUP);
// set up the reset control pin
pinMode(RESET_PIN, OUTPUT);
digitalWrite(RESET_PIN, HIGH);
Serial.begin(9600);
Serial.println("starting up..");
Serial.print("Radio status: ");
int result = radio.testConnection();
Serial.println(result,DEC);
radio.initialize();
radio.frequency(446000);
radio.setVolume1(0xF);
radio.setVolume2(0xF);
radio.setModeReceive();
radio.setTxSourceMic();
radio.setSQLoThresh(80);
radio.setSQOn();
Serial.println("Done with radio beacon setup. Press and hold a key to transmit.");
}
int state = 0;
long timer = 0;
int morseletter = 0;
int morsesymbol = 0;
long keyer = 0;
char symbol;
void loop() {
if(Serial.available() > 0) {
if(state == 0) {
state = 10;
radio.setModeTransmit();
timer = millis();
keyer = millis();
}
if(state == 10) {
timer = millis();
}
}
if(millis() > (timer + 500)) { radio.setModeReceive(); morseletter = 0; morsesymbol = 0; state = 0; }
if(state == 10) {
if(millis() > (keyer + (DOT * 3))) {
keyer = millis();
symbol = lookup(callsign[morseletter],morsesymbol);
if(symbol == '-') { tone(9,1000,DOT*3); }
if(symbol == '.') { tone(9,1000,DOT); }
if(symbol == 0) { morsesymbol = 0; morseletter++; }
if(callsign[morseletter] == 0) { morsesymbol = 0; morseletter = 0; }
}
}
}
char lookup(char letter, int morsesymbol) {
for(int x = 0; x < 54; x++) {
if(letter == bascii[x]) {
return bitu[x][morsesymbol];
}
}
}

View File

@ -1,60 +0,0 @@
/* Hamshield
* Example: HAMBot
* Simple DTMF controlled HAM Radio Robot. You will need
* seperate DTMF equipment as well as robot for this
* example.
* Connect the HamShield to your Arduino. Screw the antenna
* into the HamShield RF jack. Connect the Arduino to wall
* power and then to your computer via USB. After uploading
* this program to your adruino, you can send commands from
* your DTMF equipment using the following list:
* '4' => turn robot left
* '6' => turn robot right
* '2' => move robot forward
* '5' => tell robot to send morse code identity
*/
#include <ArduinoRobot.h> // include the robot library
#include <HamShield.h>
#include <SPI.h>
#define PWM_PIN 3
#define RESET_PIN A3
#define SWITCH_PIN 2
HamShield radio;
void setup() {
// NOTE: if not using PWM out, it should be held low to avoid tx noise
pinMode(PWM_PIN, OUTPUT);
digitalWrite(PWM_PIN, LOW);
// prep the switch
pinMode(SWITCH_PIN, INPUT_PULLUP);
// set up the reset control pin
pinMode(RESET_PIN, OUTPUT);
digitalWrite(RESET_PIN, HIGH);
Robot.begin();
radio.initialize();
radio.frequency(145510);
}
void loop() {
if(radio.waitForDTMF()) { // wait for a received DTMF tone
uint8_t command = radio.getLastDTMFDigit(); // get the last DTMF tone sent
if(command == '4') { Robot.turn(-90); } // turn robot left
if(command == '6') { Robot.turn(90); } // turn robot right
if(command == '2') { Robot.motorsWrite(-255,-255); delay(500); Robot.motorsWrite(255, 255); } // move robot forward
if(command == '5') { // tell robot to send morse code identity
if(radio.waitForChannel()) { // wait for the user to release the transmit button
radio.setModeTransmit(); // turn on transmit mode
radio.morseOut("1ZZ9ZZ I AM HAMRADIO ROBOT"); // send morse code
radio.setModeReceive(); // go back to receive mode on radio
}
}
}
}

View File

@ -1,131 +0,0 @@
/* Hamshield
* Example: Parrot
* Record sound and then plays it back a few times. Very low
* sound quality @ 2KHz 0.75 seconds. A bit robotic and weird.
* You will need a HandyTalkie (HT) to test the output of this
* example.
* Connect the HamShield to your Arduino. Screw the antenna
* into the HamShield RF jack. Plug a pair of headphones into
* the HamShield. Connect the Arduino to wall power and then to
* your computer via USB. To test the output, tune you HT to
* 446MHz. The HamShield should make a recording of the next
* broadcast on that frequncy. The recording should then be
* repeated ten times by the HamShield.
*/
#include <HamShield.h>
#define PWM_PIN 3
#define RESET_PIN A3
#define SWITCH_PIN 2
#define RATE 500
#define SIZE 1500
HamShield radio;
char sound[SIZE];
unsigned int sample1;
int x = -1;
int16_t rssi;
byte mode = 8;
void setup() {
// NOTE: if not using PWM out, it should be held low to avoid tx noise
pinMode(PWM_PIN, OUTPUT);
digitalWrite(PWM_PIN, LOW);
// prep the switch
pinMode(SWITCH_PIN, INPUT_PULLUP);
// set up the reset control pin
pinMode(RESET_PIN, OUTPUT);
digitalWrite(RESET_PIN, HIGH);
// int result = radio.testConnection();
radio.initialize();
radio.frequency(446000);
setPwmFrequency(9, 1);
}
void loop() {
rssi = radio.readRSSI();
if(rssi > -100) {
if(x == -1) {
for(x = 0; x < SIZE; x++) {
if(mode == 4) {
sample1 = analogRead(2);
sound[x] = sample1 >> 4;
delayMicroseconds(RATE); x++;
sample1 = analogRead(2);
sound[x] = (sample1 & 0xF0) | sound[x];
delayMicroseconds(RATE);
} else {
sound[x] = analogRead(2);
delayMicroseconds(RATE); x++;
sound[x] = analogRead(2);
delayMicroseconds(RATE);
}
}
}
}
if(rssi < -100) {
if(x == 1500) {
radio.setModeTransmit();
delay(500);
tone(9,1000,500); delay(750);
for(int r = 0; r < 10; r++) {
for(x = 0; x < SIZE; x++) {
if(mode == 4) {
analogWrite(9,sound[x] << 4);
delayMicroseconds(RATE); x++;
analogWrite(9,sound[x] & 0xF);
delayMicroseconds(RATE); } else {
analogWrite(9,sound[x]);
delayMicroseconds(RATE); x++;
analogWrite(9,sound[x]);
delayMicroseconds(RATE);
}
} }
tone(9,1000,500); delay(750);
radio.setModeReceive();
x = -1;
}
}
}
void setPwmFrequency(int pin, int divisor) {
byte mode;
if(pin == 5 || pin == 6 || pin == 9 || pin == 10) {
switch(divisor) {
case 1: mode = 0x01; break;
case 8: mode = 0x02; break;
case 64: mode = 0x03; break;
case 256: mode = 0x04; break;
case 1024: mode = 0x05; break;
default: return;
}
if(pin == 5 || pin == 6) {
TCCR0B = TCCR0B & 0b11111000 | mode;
} else {
TCCR1B = TCCR1B & 0b11111000 | mode;
}
} else if(pin == 3 || pin == 11) {
switch(divisor) {
case 1: mode = 0x01; break;
case 8: mode = 0x02; break;
case 32: mode = 0x03; break;
case 64: mode = 0x04; break;
case 128: mode = 0x05; break;
case 256: mode = 0x06; break;
case 1024: mode = 0x7; break;
default: return;
}
TCCR2B = TCCR2B & 0b11111000 | mode;
}
}

View File

@ -21,28 +21,14 @@ Mode ASCII Description
-------------- ----------- -------------------------------------------------------------------------------------------------------------------------------------------- ----------------- -------------- ----------- -------------------------------------------------------------------------------------------------------------------------------------------- -----------------
Transmit space Space must be received at least every 500 mS Yes Transmit space Space must be received at least every 500 mS Yes
Receive not space If space is not received and/or 500 mS timeout of space occurs, unit will go into receive mode Yes Receive not space If space is not received and/or 500 mS timeout of space occurs, unit will go into receive mode Yes
CTCSS In A<tone>; <tone> must be a numerical ascii value with decimal point indicating CTCSS receive tone required to unsquelch No
CTCSS Out B<tone>; <tone> must be a numerical ascii value with decimal point indicating CTCSS transmit tone No
CTCSS Enable C<state>; Turns on CTCSS mode (analog tone) with 1, off with 0. No
CDCSS Enable D<state>; Turns on CDCSS mode (digital tone) with 1, off with 0. No
Bandwidth E<mode>; for 12.5KHz mode is 0, for 25KHz, mode is 1 No Bandwidth E<mode>; for 12.5KHz mode is 0, for 25KHz, mode is 1 No
Frequency F<freq>; Set the receive frequency in KHz, if offset is disabled, this is the transmit frequency No Frequency F<freq>; Set the receive frequency in KHz, if offset is disabled, this is the transmit frequency No
CDCSS In G<code>; <code> must be a valid CDCSS code No
CDCSS Out H<code>; <code> must be a valid CDCSS code No
Print tones I Prints out all configured tones and codes, coma delimited in format: CTCSS In, CTCSS Out, CDCSS In, CDCSS Out No
Morse Out M<text>; A small buffer for morse code (32 chars) Morse Out M<text>; A small buffer for morse code (32 chars)
Power level P<level>; Set the power amp level, 0 = lowest, 15 = highest No Power level P<level>; Set the power amp level, 0 = lowest, 15 = highest No
Enable Offset R<state>; 1 turns on repeater offset mode, 0 turns off repeater offset mode No Enable Offset R<state>; 1 turns on repeater offset mode, 0 turns off repeater offset mode No
Squelch S<level>; Set the squelch level No Squelch S<level>; Set the squelch level No
TX Offset T<freq>; The absolute frequency of the repeater offset to transmit on in KHz No TX Offset T<freq>; The absolute frequency of the repeater offset to transmit on in KHz No
Volume V<level>; Set the volume level of the receiver No
Reset X Reset all settings to default No
Sleep Z Sleep radio No
Filters @<state>; Set bit to enable, clear bit to disable: 0 = pre/de-emphasis, 1 = high pass filter, 2 = low pass filter (default: ascii 7, all enabled) No
Vox mode $<state>; 0 = vox off, >= 1 audio sensitivity. lower value more sensitive No
Mic Channel *<state>; Set the voice channel. 0 = signal from mic or arduino, 1 = internal tone generator No
RSSI ? Respond with the current receive level in - dBm (no sign provided on numerical response) No RSSI ? Respond with the current receive level in - dBm (no sign provided on numerical response) No
Tone Gen % (notes) To send a tone, use the following format: Single tone: %1,<freq>,<length>; Dual tone: %2,<freq>,<freq>,<length>; DTMF: %3,<key>,<length>; No
Voice Level ^ Respond with the current voice level (VSSI) Voice Level ^ Respond with the current voice level (VSSI)