Initial import of the main code from https://github.com/slepp/AX25

Partially functional, but no accuracy tests complete yet.
This commit is contained in:
Stephen Olesen 2015-06-30 19:22:46 -06:00
parent 6a5815d9b5
commit 9b2987de08
5 changed files with 886 additions and 3 deletions

507
AFSK.cpp Normal file
View File

@ -0,0 +1,507 @@
#include <Arduino.h>
#include "HamShield.h"
#include "SimpleFIFO.h"
#include <util/atomic.h>
#define PHASE_BIT 8
#define PHASE_INC 1
#define PHASE_MAX (SAMPLEPERBIT * PHASE_BIT)
#define PHASE_THRES (PHASE_MAX / 2)
#define BIT_DIFFER(bitline1, bitline2) (((bitline1) ^ (bitline2)) & 0x01)
#define EDGE_FOUND(bitline) BIT_DIFFER((bitline), (bitline) >> 1)
#define PPOOL_SIZE 2
#define ACCUMULATOR_BITS 24 // This is 2^10 bits used from accum
//#undef PROGMEM
//#define PROGMEM __attribute__((section(".progmem.data")))
const uint8_t PROGMEM sinetable[256] = {
128,131,134,137,140,143,146,149,152,156,159,162,165,168,171,174,
176,179,182,185,188,191,193,196,199,201,204,206,209,211,213,216,
218,220,222,224,226,228,230,232,234,236,237,239,240,242,243,245,
246,247,248,249,250,251,252,252,253,254,254,255,255,255,255,255,
255,255,255,255,255,255,254,254,253,252,252,251,250,249,248,247,
246,245,243,242,240,239,237,236,234,232,230,228,226,224,222,220,
218,216,213,211,209,206,204,201,199,196,193,191,188,185,182,179,
176,174,171,168,165,162,159,156,152,149,146,143,140,137,134,131,
128,124,121,118,115,112,109,106,103,99, 96, 93, 90, 87, 84, 81,
79, 76, 73, 70, 67, 64, 62, 59, 56, 54, 51, 49, 46, 44, 42, 39,
37, 35, 33, 31, 29, 27, 25, 23, 21, 19, 18, 16, 15, 13, 12, 10,
9, 8, 7, 6, 5, 4, 3, 3, 2, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 3, 4, 5, 6, 7, 8,
9, 10, 12, 13, 15, 16, 18, 19, 21, 23, 25, 27, 29, 31, 33, 35,
37, 39, 42, 44, 46, 49, 51, 54, 56, 59, 62, 64, 67, 70, 73, 76,
79, 81, 84, 87, 90, 93, 96, 99, 103,106,109,112,115,118,121,124
};
#define AFSK_SPACE 0
#define AFSK_MARK 1
// Timers
volatile unsigned long lastTx = 0;
volatile unsigned long lastTxEnd = 0;
volatile unsigned long lastRx = 0;
#define REFCLK 9600
//#define REFCLK 31372.54902
//#define REFCLK (16000000.0/510.0)
//#define REFCLK 31200.0
// 2200Hz = pow(2,32)*2200.0/refclk
// 1200Hz = pow(2,32)*1200.0/refclk
static const unsigned long toneStep[2] = {
pow(2,32)*2200.0/REFCLK,
pow(2,32)*1200.0/REFCLK
};
// Set to an arbitrary frequency
void AFSK::Encoder::setFreq(unsigned long freq, byte vol) {
unsigned long newStep = pow(2,32)*freq/REFCLK;
rStep = newStep; // Atomic? (ish)
}
// This allows a programmatic way to tune the output tones
static const byte toneVolume[2] = {
255,
255
};
#define T_BIT ((unsigned int)(REFCLK/1200))
void AFSK::Encoder::process() {
// Check what clock pulse we're on
if(bitClock == 0) { // We are onto our next bit timing
// We're on the start of a byte position, so fetch one
if(bitPosition == 0) {
if(preamble) { // Still in preamble
currentByte = HDLC_PREAMBLE;
--preamble; // Decrement by one
} else {
if(!packet) { // We aren't on a packet, grab one
// Unless we already sent enough
if(maxTx-- == 0) {
stop();
lastTxEnd = millis();
return;
}
packet = pBuf.getPacket();
if(!packet) { // There actually weren't any
stop(); // Stop transmitting and return
lastTxEnd = millis();
return;
}
lastTx = millis();
currentBytePos = 0;
}
// We ran out of actual data, provide an HDLC frame (idle)
if(currentBytePos++ == packet->len) {
pBuf.freePacket(packet);
packet = pBuf.getPacket(); // Get the next, if any
currentBytePos = 0;
currentByte = HDLC_FRAME;
hdlc = true;
} else {
// Grab the next byte
currentByte = packet->getByte(); //[currentBytePos++];
if(currentByte == HDLC_ESCAPE) {
currentByte = packet->getByte(); //[currentBytePos++];
hdlc = true;
} else {
hdlc = false;
}
}
}
}
// Pickup the last bit
currentBit = currentByte & 0x1;
if(lastZero == 5) {
currentBit = 0; // Force a 0 bit output
} else {
currentByte >>= 1; // Bit shift it right, for the next round
++bitPosition; // Note our increase in position
}
// To handle NRZI 5 bit stuffing, count the bits
if(!currentBit || hdlc)
lastZero = 0;
else
++lastZero;
// NRZI and AFSK uses toggling 0s, "no change" on 1
// So, if not a 1, toggle to the opposite tone
if(!currentBit)
currentTone = !currentTone;
}
// Advance the bitclock here, to let first bit be sent early
if(++bitClock == T_BIT)
bitClock = 0;
accumulator += toneStep[currentTone];
uint8_t phAng = (accumulator >> ACCUMULATOR_BITS);
/*if(toneVolume[currentTone] != 255) {
OCR2B = pwm * toneVolume[currentTone] / 255;
} else {*/
// No volume scaling required
OCR2B = pgm_read_byte_near(sinetable + phAng);
/*}*/
}
bool AFSK::Encoder::start() {
if(!done || sending) {
return false;
}
if(randomWait > millis()) {
return false;
}
accumulator = 0;
// First real byte is a frame
currentBit = 0;
lastZero = 0;
bitPosition = 0;
bitClock = 0;
preamble = 23; // 6.7ms each, 23 = 153ms
done = false;
hdlc = true;
packet = 0x0; // No initial packet, find in the ISR
currentBytePos = 0;
maxTx = 3;
sending = true;
return true;
}
void AFSK::Encoder::stop() {
randomWait = 0;
sending = false;
done = true;
OCR2B = 0;
}
AFSK::Decoder::Decoder() {
// Initialize the sampler delay line (phase shift)
for(unsigned char i = 0; i < SAMPLEPERBIT/2; i++)
delay_fifo.enqueue(0);
}
bool AFSK::HDLCDecode::hdlcParse(bool bit, SimpleFIFO<uint8_t,HAMSHIELD_AFSK_RX_FIFO_LEN> *fifo) {
bool ret = true;
demod_bits <<= 1;
demod_bits |= bit ? 1 : 0;
// Flag
if(demod_bits == HDLC_FRAME) {
fifo->enqueue(HDLC_FRAME);
rxstart = true;
currchar = 0;
bit_idx = 0;
return ret;
}
// Reset
if((demod_bits & HDLC_RESET) == HDLC_RESET) {
rxstart = false;
lastRx = millis();
return ret;
}
if(!rxstart) {
return ret;
}
// Stuffed?
if((demod_bits & 0x3f) == 0x3e)
return ret;
if(demod_bits & 0x01)
currchar |= 0x80;
if(++bit_idx >= 8) {
if(currchar == HDLC_FRAME ||
currchar == HDLC_RESET ||
currchar == HDLC_ESCAPE) {
fifo->enqueue(HDLC_ESCAPE);
}
fifo->enqueue(currchar & 0xff);
currchar = 0;
bit_idx = 0;
} else {
currchar >>= 1;
}
return ret;
}
// Handle the A/D converter interrupt (hopefully quickly :)
void AFSK::Decoder::process(int8_t curr_sample) {
// Run the same through the phase multiplier and butterworth filter
iir_x[0] = iir_x[1];
iir_x[1] = ((int8_t)delay_fifo.dequeue() * curr_sample) >> 2;
iir_y[0] = iir_y[1];
iir_y[1] = iir_x[0] + iir_x[1] + (iir_y[0] >> 1) + (iir_y[0]>>3) + (iir_y[0]>>5);
// Shift the bit into place based on the output of the discriminator
sampled_bits <<= 1;
sampled_bits |= (iir_y[1] > 0) ? 1 : 0;
// Place this ADC sample into the delay line
delay_fifo.enqueue(curr_sample);
// If we found a 0/1 transition, adjust phases to track
if(EDGE_FOUND(sampled_bits)) {
if(curr_phase < PHASE_THRES)
curr_phase += PHASE_INC;
else
curr_phase -= PHASE_INC;
}
// Move ahead in phase
curr_phase += PHASE_BIT;
// If we've gone over the phase maximum, we should now have some data
if(curr_phase >= PHASE_MAX) {
curr_phase %= PHASE_MAX;
found_bits <<= 1;
// If we have 3 bits or more set, it's a positive bit
register uint8_t bits = sampled_bits & 0x07;
if(bits == 0x07 || bits == 0x06 || bits == 0x05 || bits == 0x03) {
found_bits |= 1;
}
hdlc.hdlcParse(!EDGE_FOUND(found_bits), &rx_fifo); // Process it
}
}
// This routine uses a pre-allocated Packet structure
// to save on the memory requirements of the stream data
bool AFSK::Decoder::read() {
bool retVal = false;
if(!currentPacket) { // We failed a prior memory allocation
currentPacket = pBuf.makePacket(PACKET_MAX_LEN);
if(!currentPacket) // Still nothing
return false;
}
// While we have AFSK receive FIFO bytes...
while(rx_fifo.count()) {
// Grab the character
char c = rx_fifo.dequeue();
bool escaped = false;
if(c == HDLC_ESCAPE) { // We received an escaped byte, mark it
escaped = true;
currentPacket->append(HDLC_ESCAPE); // Append without FCS
c = rx_fifo.dequeue(); // Reset to the next character
}
// Append all the bytes
// This will include unescaped HDLC_FRAME bytes
//if(c == HDLC_FRAME && !escaped)
//currentPacket->append(c); // Framing bytes don't get FCS updates
//else
if(c != HDLC_FRAME)
currentPacket->appendFCS(c); // Escaped characters and all else go into FCS
if(currentPacket->len > PACKET_MAX_LEN) {
// We've now gone too far and picked up far too many bytes
// Cancel this frame, start back at the beginning
currentPacket->clear();
continue;
}
// We have a frame boundary, if it isn't escaped
// If it's escaped, it was part of the data stream
if(c == HDLC_FRAME && !escaped) {
if(!currentPacket->len) {
currentPacket->clear(); // There wasn't any data, restart stream
continue;
} else {
// We have some bytes in stream, check it meets minimum payload length
// Min payload is 1 (flag) + 14 (addressing) + 2 (control/PID) + 1 (flag)
if(currentPacket->len >= 16) {
// We should end up here with a valid FCS due to the appendFCS
if(currentPacket->crcOK()) { // Magic number for the CRC check passing
// Valid frame, so, let's filter for control + PID
// Maximum search distance is 71 bytes to end of the address fields
// Skip the HDLC frame start
bool filtered = false;
for(unsigned char i = 0; i < (currentPacket->len<70?currentPacket->len:71); ++i) {
if((currentPacket->getByte() & 0x1) == 0x1) { // Found a byte with LSB set
// which marks the final address payload
// next two bytes should be the control/PID
if(currentPacket->getByte() == 0x03 && currentPacket->getByte() == 0xf0) {
filtered = true;
break; // Found it
}
}
}
if(!filtered) {
// Frame wasn't one we care about, discard
currentPacket->clear();
continue;
}
// It's all done and formatted, ready to go
currentPacket->ready = 1;
if(!pBuf.putPacket(currentPacket)) // Put it in the receive FIFO
pBuf.freePacket(currentPacket); // Out of FIFO space, so toss it
// Allocate a new one of maximum length
currentPacket = pBuf.makePacket(PACKET_MAX_LEN);
retVal = true;
}
}
}
// Restart the stream
currentPacket->clear();
}
}
return retVal; // This is true if we parsed a packet in this flow
}
void AFSK::Decoder::start() {
// Do this in start to allocate our first packet
currentPacket = pBuf.makePacket(PACKET_MAX_LEN);
// Configure the ADC and Timer1 to trigger automatic interrupts
TCCR1A = 0;
TCCR1B = _BV(CS11) | _BV(WGM13) | _BV(WGM12);
ICR1 = ((F_CPU / 8) / REFCLK) - 1;
ADMUX = _BV(REFS0) | _BV(ADLAR) | 0; // Channel 0, shift result left (ADCH used)
DDRC &= ~_BV(0);
PORTC &= ~_BV(0);
DIDR0 |= _BV(0);
ADCSRB = _BV(ADTS2) | _BV(ADTS1) | _BV(ADTS0);
ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADATE) | _BV(ADIE) | _BV(ADPS2); // | _BV(ADPS0);
}
AFSK::PacketBuffer::PacketBuffer() {
nextPacketIn = 0;
nextPacketOut = 0;
inBuffer = 0;
for(unsigned char i = 0; i < PACKET_BUFFER_SIZE; ++i) {
packets[i] = 0x0;
}
}
unsigned char AFSK::PacketBuffer::readyCount() volatile {
unsigned char i;
unsigned int cnt = 0;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
for(i = 0; i < PACKET_BUFFER_SIZE; ++i) {
if(packets[i] && packets[i]->ready)
++cnt;
}
}
return cnt;
}
// Return NULL on empty packet buffers
AFSK::Packet *AFSK::PacketBuffer::getPacket() volatile {
unsigned char i = 0;
AFSK::Packet *p = NULL;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
if(inBuffer == 0) {
return 0x0;
}
do {
p = packets[nextPacketOut];
if(p) {
packets[nextPacketOut] = 0x0;
--inBuffer;
}
nextPacketOut = ++nextPacketOut % PACKET_BUFFER_SIZE;
++i;
} while(!p && i<PACKET_BUFFER_SIZE);
// Return whatever we found, if anything
}
return p;
}
//void Packet::init(uint8_t *buf, unsigned int dlen, bool freeData) {
void AFSK::Packet::init(unsigned short dlen) {
//data = (unsigned char *)buf;
ready = 0;
freeData = 1; //freeData;
type = PACKET_STATIC;
len = 0; // We had a length, but don't put it here.
maxLen = dlen; // Put it here instead
dataPtr = (uint8_t *)malloc(dlen+16);
dataPos = dataPtr;
readPos = dataPtr;
fcs = 0xffff;
}
// Allocate a new packet with a data buffer as set
AFSK::Packet *AFSK::PacketBuffer::makePacket(unsigned short dlen) {
AFSK::Packet *p;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
//Packet *p = findPooledPacket();
p = new Packet(); //(Packet *)malloc(sizeof(Packet));
if(p) // If allocated
p->init(dlen);
}
return p; // Passes through a null on failure.
}
// Free a packet struct, mainly convenience
void AFSK::PacketBuffer::freePacket(Packet *p) {
if(!p)
return;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
p->free();
/*unsigned char i;
for(i = 0; i < PPOOL_SIZE; ++i)
if(p == &(pPool[i]))
break;
if(i < PPOOL_SIZE)
pStatus &= ~(1<<i);*/
delete p;
}
}
// Put a packet onto the buffer array
bool AFSK::PacketBuffer::putPacket(Packet *p) volatile {
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
if(inBuffer >= PACKET_BUFFER_SIZE) {
return false;
}
packets[nextPacketIn] = p;
nextPacketIn = ++nextPacketIn % PACKET_BUFFER_SIZE;
++inBuffer;
}
return true;
}
// Print a single byte to the data array
size_t AFSK::Packet::write(uint8_t c) {
return (appendFCS(c)?1:0);
}
size_t AFSK::Packet::write(const uint8_t *ptr, size_t len) {
size_t i;
for(i = 0; i < len; ++i)
if(!appendFCS(ptr[i]))
break;
return i;
}
// Determine what we want to do on this ADC tick.
void AFSK::timer() {
if(encoder.isSending())
encoder.process();
decoder.process(ADCH - 128);
}
void AFSK::start() {
afskEnabled = true;
decoder.start();
}

265
AFSK.h Normal file
View File

@ -0,0 +1,265 @@
#ifndef _AFSK_H_
#define _AFSK_H_
#include <Arduino.h>
#include <SimpleFIFO.h>
#define SAMPLERATE 9600
#define BITRATE 1200
#define SAMPLEPERBIT (SAMPLERATE / BITRATE)
#define RX_FIFO_LEN 16
#define PACKET_BUFFER_SIZE 2
#define PACKET_STATIC 0
// This is with all the digis, two addresses, framing and full payload
// Two more bytes are added for HDLC_ESCAPEs
#define PACKET_MAX_LEN 512
// HDLC framing bits
#define HDLC_FRAME 0x7E
#define HDLC_RESET 0x7F
#define HDLC_PREAMBLE 0x00
#define HDLC_ESCAPE 0x1B
#define HDLC_TAIL 0x1C
class AFSK {
private:
volatile bool afskEnabled;
public:
bool enabled() { return afskEnabled; };
class Packet:public Print {
public:
Packet():Print() {};
virtual size_t write(uint8_t);
// Stock virtual method does what we want here.
//virtual size_t write(const char *);
virtual size_t write(const uint8_t *, size_t);
using Print::write;
unsigned char ready : 1;
unsigned char type : 2;
unsigned char freeData : 1;
unsigned short len;
unsigned short maxLen;
//void init(uint8_t *buf, unsigned int dlen, bool freeData);
void init(unsigned short dlen);
inline void free() {
if(freeData)
::free(dataPtr);
}
inline const unsigned char getByte(void) {
return *readPos++;
}
inline const unsigned char getByte(uint16_t p) {
return *(dataPtr+p);
}
inline void start() {
fcs = 0xffff;
*dataPos++ = HDLC_ESCAPE;
*dataPos++ = HDLC_FRAME;
len = 2;
}
inline bool append(char c) {
if(len < maxLen) {
++len;
*dataPos++ = c;
return true;
}
return false;
}
#define UPDATE_FCS(d) e=fcs^(d); f=e^(e<<4); fcs=(fcs>>8)^(f<<8)^(f<<3)^(f>>4)
//#define UPDATE_FCS(d) s=(d)^(fcs>>8); t=s^(s>>4); fcs=(fcs<<8)^t^(t<<5)^(t<<12)
inline bool appendFCS(unsigned char c) {
register unsigned char e, f;
if(len < maxLen - 4) { // Leave room for FCS/HDLC
append(c);
UPDATE_FCS(c);
return true;
}
return false;
}
inline void finish() {
append(~(fcs & 0xff));
append(~((fcs>>8) & 0xff));
append(HDLC_ESCAPE);
append(HDLC_FRAME);
ready = 1;
}
inline void clear() {
fcs = 0xffff;
len = 0;
readPos = dataPtr;
dataPos = dataPtr;
}
inline bool crcOK() {
return (fcs == 0xF0B8);
}
private:
uint8_t *dataPtr, *dataPos, *readPos;
unsigned short fcs;
};
class PacketBuffer {
public:
// Initialize the buffers
PacketBuffer();
// How many packets are in the buffer?
unsigned char count() volatile { return inBuffer; };
// And how many of those are ready?
unsigned char readyCount() volatile;
// Retrieve the next packet
Packet *getPacket() volatile;
// Create a packet structure as needed
// This does not place it in the queue
static Packet *makePacket(unsigned short);
// Conveniently free packet memory
static void freePacket(Packet *);
// Place a packet into the buffer
bool putPacket(Packet *) volatile;
private:
volatile unsigned char inBuffer;
Packet * volatile packets[PACKET_BUFFER_SIZE];
volatile unsigned char nextPacketIn;
volatile unsigned char nextPacketOut;
};
class Encoder {
public:
Encoder() {
randomWait = 1000; // At the very begin, wait at least one second
sending = false;
done = true;
packet = 0x0;
currentBytePos = 0;
}
void setFreq(unsigned long, byte);
volatile inline bool isSending() volatile {
return sending;
}
volatile inline bool isDone() volatile {
return done;
}
volatile inline bool hasPackets() volatile {
return (pBuf.count() > 0);
}
inline bool putPacket(Packet *packet) {
return pBuf.putPacket(packet);
}
inline void setRandomWait() {
randomWait = 250 + (rand() % 1000) + millis();
}
bool start();
void stop();
void process();
private:
volatile bool sending;
byte currentByte;
byte currentBit : 1;
byte currentTone : 1;
byte lastZero : 3;
byte bitPosition : 3;
byte preamble : 6;
byte bitClock;
bool hdlc;
byte maxTx;
Packet *packet;
PacketBuffer pBuf;
unsigned char currentBytePos;
volatile unsigned long randomWait;
volatile bool done;
// Phase accumulator, 32 bits, we'll use ACCUMULATOR_BITS of it
unsigned long accumulator;
// Current radian step for the accumulator
unsigned long rStep;
};
class HDLCDecode {
public:
bool hdlcParse(bool, SimpleFIFO<uint8_t,RX_FIFO_LEN> *fifo);
volatile bool rxstart;
private:
uint8_t demod_bits;
uint8_t bit_idx;
uint8_t currchar;
};
class Decoder {
public:
Decoder();
void start();
bool read();
void process(int8_t);
inline bool dataAvailable() {
return (rx_fifo.count() > 0);
}
inline uint8_t getByte() {
return rx_fifo.dequeue();
}
inline uint8_t packetCount() volatile {
return pBuf.count();
}
inline Packet *getPacket() {
return pBuf.getPacket();
}
inline bool isReceiving() volatile {
return hdlc.rxstart;
}
private:
Packet *currentPacket;
SimpleFIFO<int8_t,SAMPLEPERBIT/2+1> delay_fifo;
SimpleFIFO<uint8_t,RX_FIFO_LEN> rx_fifo; // This should be drained fairly often
int16_t iir_x[2];
int16_t iir_y[2];
uint8_t sampled_bits;
int8_t curr_phase;
uint8_t found_bits;
PacketBuffer pBuf;
HDLCDecode hdlc;
};
public:
inline bool read() {
return decoder.read();
}
inline bool txReady() volatile {
if(encoder.isDone() && encoder.hasPackets())
return true;
return false;
}
inline bool isDone() volatile { return encoder.isDone(); }
inline bool txStart() {
if(decoder.isReceiving()) {
encoder.setRandomWait();
return false;
}
return encoder.start();
}
inline bool putTXPacket(Packet *packet) {
bool ret = encoder.putPacket(packet);
if(!ret) // No room?
PacketBuffer::freePacket(packet);
return ret;
}
inline Packet *getRXPacket() {
return decoder.getPacket();
}
inline uint8_t rxPacketCount() volatile {
return decoder.packetCount();
}
//unsigned long lastTx;
//unsigned long lastRx;
void start();
void timer();
Encoder encoder;
Decoder decoder;
};
#endif /* _AFSK_H_ */

View File

@ -1352,3 +1352,13 @@ void HamShield::AFSKOut(char buffer[80]) {
}
*/
// This is the ADC timer handler. When enabled, we'll see what we're supposed
// to be reading/handling, and trigger those on the main object.
ISR(ADC_vect) {
TIFR1 = _BV(ICF1); // Clear the timer flag
if(HamShield::sHamShield->afsk.enabled()) {
HamShield::sHamShield->afsk.timer();
}
}

View File

@ -9,6 +9,8 @@
#define _HAMSHIELD_H_
#include "I2Cdev_rda.h"
#include "SimpleFIFO.h"
#include "AFSK.h"
#include <avr/pgmspace.h>
// HamShield constants
@ -19,6 +21,8 @@
#define HAMSHIELD_PWM_PIN 11 // Pin assignment for PWM output
#define HAMSHIELD_EMPTY_CHANNEL_RSSI -110 // Default threshold where channel is considered "clear"
#define HAMSHIELD_AFSK_RX_FIFO_LEN 16
// button modes
#define PTT_MODE 1
#define RESET_MODE 2
@ -531,7 +535,14 @@ class HamShield {
bool parityCalc(int code);
// void AFSKOut(char buffer[80]);
// AFSK routines
bool AFSKStart();
bool AFSKEnabled() { return afsk.enabled(); }
bool AFSKStop();
bool AFSKOut(const char *);
class AFSK afsk;
private:
uint8_t devAddr;
uint16_t radio_i2c_buf[4];
@ -542,9 +553,10 @@ class HamShield {
uint32_t MURS[];
uint32_t WX[];
public:
// public singleton for ISRs to reference
public:
static HamShield *sHamShield; // HamShield singleton, used for ISRs mostly
// int8_t A1846S::readWord(uint8_t devAddr, uint8_t regAddr, uint16_t *data, uint16_t timeout);
// int8_t A1846S::readBits(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint16_t *data, uint16_t timeout);
// int8_t A1846S::readBit(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint16_t *data, uint16_t timeout);

89
SimpleFIFO.h Normal file
View File

@ -0,0 +1,89 @@
#ifndef SimpleFIFO_h
#define SimpleFIFO_h
/*
||
|| @file SimpleFIFO.h
|| @version 1.2
|| @author Alexander Brevig
|| @contact alexanderbrevig@gmail.com
||
|| @description
|| | A simple FIFO class, mostly for primitive types but can be used with classes if assignment to int is allowed
|| | This FIFO is not dynamic, so be sure to choose an appropriate size for it
|| #
||
|| @license
|| | Copyright (c) 2010 Alexander Brevig
|| | This library is free software; you can redistribute it and/or
|| | modify it under the terms of the GNU Lesser General Public
|| | License as published by the Free Software Foundation; version
|| | 2.1 of the License.
|| |
|| | This library is distributed in the hope that it will be useful,
|| | but WITHOUT ANY WARRANTY; without even the implied warranty of
|| | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|| | Lesser General Public License for more details.
|| |
|| | You should have received a copy of the GNU Lesser General Public
|| | License along with this library; if not, write to the Free Software
|| | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|| #
||
*/
template<typename T, int rawSize>
class SimpleFIFO {
public:
const int size; //speculative feature, in case it's needed
SimpleFIFO();
T dequeue(); //get next element
bool enqueue( T element ); //add an element
T peek() const; //get the next element without releasing it from the FIFO
void flush(); //[1.1] reset to default state
//how many elements are currently in the FIFO?
unsigned char count() { return numberOfElements; }
private:
#ifndef SimpleFIFO_NONVOLATILE
volatile unsigned char numberOfElements;
volatile unsigned char nextIn;
volatile unsigned char nextOut;
volatile T raw[rawSize];
#else
unsigned char numberOfElements;
unsigned char nextIn;
unsigned char nextOut;
T raw[rawSize];
#endif
};
template<typename T, int rawSize>
SimpleFIFO<T,rawSize>::SimpleFIFO() : size(rawSize) {
flush();
}
template<typename T, int rawSize>
bool SimpleFIFO<T,rawSize>::enqueue( T element ) {
if ( count() >= rawSize ) { return false; }
numberOfElements++;
nextIn %= size;
raw[nextIn] = element;
nextIn++; //advance to next index
return true;
}
template<typename T, int rawSize>
T SimpleFIFO<T,rawSize>::dequeue() {
numberOfElements--;
nextOut %= size;
return raw[ nextOut++];
}
template<typename T, int rawSize>
T SimpleFIFO<T,rawSize>::peek() const {
return raw[ nextOut % size];
}
template<typename T, int rawSize>
void SimpleFIFO<T,rawSize>::flush() {
nextIn = nextOut = numberOfElements = 0;
}
#endif