Updated AFSK with print routine, use new delay line. AX25 receive tune to APRS.

This commit is contained in:
Stephen Olesen 2015-07-10 11:58:37 -06:00
parent 888cf9d9fd
commit cf93050e52
3 changed files with 81 additions and 24 deletions

View File

@ -194,26 +194,25 @@ bool AFSK::HDLCDecode::hdlcParse(bool bit, SimpleFIFO<uint8_t,HAMSHIELD_AFSK_RX_
return ret; return ret;
} }
#define FASTRING_SIZE 4
#define FASTRING_MASK (FASTRING_SIZE-1)
template <typename T, int size> template <typename T, int size>
class FastRing { class FastRing {
private: private:
T ring[FASTRING_SIZE]; T ring[size];
uint8_t position; uint8_t position;
public: public:
FastRing(): position(0) {} FastRing(): position(0) {}
inline void write(T value) { inline void write(T value) {
ring[(position++) & FASTRING_MASK] = value; ring[(position++) & (size-1)] = value;
} }
inline T read() const { inline T read() const {
return ring[position & FASTRING_MASK]; return ring[position & (size-1)];
} }
inline T readn(uint8_t n) const { inline T readn(uint8_t n) const {
return ring[(position + (~n+1)) & FASTRING_MASK]; return ring[(position + (~n+1)) & (size-1)];
} }
}; };
FastRing<uint8_t,4> delayLine; // Create a delay line that's half the length of the bit cycle (-90 degrees)
FastRing<uint8_t,(T_BIT/2)> delayLine;
// Handle the A/D converter interrupt (hopefully quickly :) // Handle the A/D converter interrupt (hopefully quickly :)
void AFSK::Decoder::process(int8_t curr_sample) { void AFSK::Decoder::process(int8_t curr_sample) {
@ -269,7 +268,6 @@ bool AFSK::Decoder::read() {
while(rx_fifo.count()) { while(rx_fifo.count()) {
// Grab the character // Grab the character
char c = rx_fifo.dequeue(); char c = rx_fifo.dequeue();
bool escaped = false; bool escaped = false;
if(c == HDLC_ESCAPE) { // We received an escaped byte, mark it if(c == HDLC_ESCAPE) { // We received an escaped byte, mark it
escaped = true; escaped = true;
@ -312,10 +310,10 @@ bool AFSK::Decoder::read() {
if((currentPacket->getByte() & 0x1) == 0x1) { // Found a byte with LSB set if((currentPacket->getByte() & 0x1) == 0x1) { // Found a byte with LSB set
// which marks the final address payload // which marks the final address payload
// next two bytes should be the control/PID // next two bytes should be the control/PID
if(currentPacket->getByte() == 0x03 && currentPacket->getByte() == 0xf0) { //if(currentPacket->getByte() == 0x03 && currentPacket->getByte() == 0xf0) {
filtered = true; filtered = true;
break; // Found it break; // Found it
} //}
} }
} }
@ -520,12 +518,36 @@ size_t AFSK::Packet::appendCallsign(const char *callsign, uint8_t ssid, bool fin
appendFCS(ssidField); appendFCS(ssidField);
} }
void AFSK::Packet::print(Stream *s) {
uint8_t i;
// Second 6 bytes are source callsign
for(i=7; i<13; i++) {
s->write(*(dataPtr+i)>>1);
}
// SSID
s->write('-');
s->print((*(dataPtr+13) >> 1) & 0xF);
s->print(" -> ");
// First 6 bytes are destination callsign
for(i=0; i<6; i++) {
s->write(*(dataPtr+i)>>1);
}
// SSID
s->write('-');
s->print((*(dataPtr+6) >> 1) & 0xF);
// Control/PID next two bytes
// Skip those, print payload
for(i = 15; i<len; i++) {
s->write(*(dataPtr+i));
}
}
// Determine what we want to do on this ADC tick. // Determine what we want to do on this ADC tick.
void AFSK::timer() { void AFSK::timer() {
if(encoder.isSending()) if(encoder.isSending())
encoder.process(); encoder.process();
else else
decoder.process(ADCH - 128); decoder.process(((int8_t)(ADCH - 128)));
} }
void AFSK::start(DDS *dds) { void AFSK::start(DDS *dds) {

2
AFSK.h
View File

@ -111,6 +111,8 @@ public:
inline bool crcOK() { inline bool crcOK() {
return (fcs == 0xF0B8); return (fcs == 0xF0B8);
} }
void print(Stream *s);
private: private:
#ifdef PACKET_PREALLOCATE #ifdef PACKET_PREALLOCATE
uint8_t dataPtr[128]; uint8_t dataPtr[128];

View File

@ -2,29 +2,44 @@
#include <HamShield.h> #include <HamShield.h>
#include <Wire.h> #include <Wire.h>
//#include <LiquidCrystal_I2C.h>
//LiquidCrystal_I2C lcd(0x27,16,2);
HamShield radio; HamShield radio;
DDS dds; DDS dds;
volatile uint8_t adcMax=0, adcMin=255;
void setup() { void setup() {
Serial.begin(9600); Serial.begin(9600);
Wire.begin(); Wire.begin();
pinMode(2, OUTPUT); pinMode(2, OUTPUT);
pinMode(3, OUTPUT); pinMode(3, OUTPUT);
/*lcd.init();
lcd.setCursor(0,0);
lcd.print(F("RSSI:"));
lcd.setCursor(0,1);
lcd.print(F("ADC:"));*/
Serial.println(F("Radio test connection")); Serial.println(F("Radio test connection"));
Serial.println(radio.testConnection(), DEC); Serial.println(radio.testConnection(), DEC);
Serial.println(F("Initialize")); Serial.println(F("Initialize"));
delay(100); delay(100);
radio.initialize(); radio.initialize();
radio.frequency(144390);
radio.setVHF();
radio.setSQOff();
I2Cdev::writeWord(A1846S_DEV_ADDR_SENLOW, 0x30, 0x06);
I2Cdev::writeWord(A1846S_DEV_ADDR_SENLOW, 0x30, 0x26);
I2Cdev::writeWord(A1846S_DEV_ADDR_SENLOW, 0x44, 0b11111111);
Serial.println(F("Frequency")); Serial.println(F("Frequency"));
delay(100); delay(100);
// radio.setVHF(); Serial.print(F("Squelch(H/L): "));
// radio.setRfPower(0); Serial.print(radio.getSQHiThresh());
// radio.setModeReceive(); Serial.print(F(" / "));
radio.setVolume1(0xFF); Serial.println(radio.getSQLoThresh());
radio.setVolume2(0xFF); radio.setModeReceive();
radio.frequency(145050); Serial.print(F("RX? "));
Serial.println(radio.getRX());
Serial.println(F("DDS Start")); Serial.println(F("DDS Start"));
delay(100); delay(100);
dds.start(); dds.start();
@ -35,26 +50,38 @@ void setup() {
pinMode(11, INPUT); // Bodge for now, as pin 3 is hotwired to pin 11 pinMode(11, INPUT); // Bodge for now, as pin 3 is hotwired to pin 11
delay(100); delay(100);
dds.setAmplitude(255); dds.setAmplitude(255);
//lcd.backlight();
} }
uint32_t last = 0; uint32_t last = 0;
void loop() { void loop() {
if(radio.afsk.decoder.read() || radio.afsk.rxPacketCount()) { if(radio.afsk.decoder.read() || radio.afsk.rxPacketCount()) {
// A true return means something was put onto the packet FIFO // A true return means something was put onto the packet FIFO
Serial.println("Packet");
// If we actually have data packets in the buffer, process them all now // If we actually have data packets in the buffer, process them all now
while(radio.afsk.rxPacketCount()) { while(radio.afsk.rxPacketCount()) {
AFSK::Packet *packet = radio.afsk.getRXPacket(); AFSK::Packet *packet = radio.afsk.getRXPacket();
Serial.print(F("Packet: "));
if(packet) { if(packet) {
for(unsigned short i = 0; i < packet->len; ++i) packet->print(&Serial);
Serial.write((uint8_t)packet->getByte());
AFSK::PacketBuffer::freePacket(packet); AFSK::PacketBuffer::freePacket(packet);
} }
} }
Serial.println("");
} }
/*if(last < millis()) { /* if(last < millis()) {
Serial.println(radio.readRSSI()); uint16_t buf;
last = millis()+1000; lcd.setCursor(6,0);
lcd.print(radio.readRSSI());
lcd.print(F(" "));
lcd.setCursor(6,1);
lcd.print(adcMax);
lcd.print(F(" / "));
lcd.print(adcMin);
lcd.print(F(" "));
lcd.setCursor(11,0);
lcd.print(radio.afsk.decoder.isReceiving());
adcMin=255; adcMax=0;
last = millis()+100;
}*/ }*/
} }
@ -74,6 +101,12 @@ ISR(ADC_vect) {
PORTD |= _BV(2); // Diagnostic pin (D2) PORTD |= _BV(2); // Diagnostic pin (D2)
//dds.clockTick(); //dds.clockTick();
radio.afsk.timer(); radio.afsk.timer();
if(ADCH>adcMax) {
adcMax = ADCH;
}
if(ADCH<adcMin) {
adcMin = ADCH;
}
PORTD &= ~(_BV(2)); // Pin D2 off again PORTD &= ~(_BV(2)); // Pin D2 off again
} }