-Seperate AFSK, DDS, and KISS into their own libraries to conserve memory.
This commit is contained in:
parent
09c9911ba1
commit
f5e004fbb3
|
@ -15,6 +15,7 @@
|
||||||
#define DDS_DEBUG_SERIAL
|
#define DDS_DEBUG_SERIAL
|
||||||
|
|
||||||
#include <HamShield.h>
|
#include <HamShield.h>
|
||||||
|
#include <DDS.h>
|
||||||
|
|
||||||
#define PWM_PIN 3
|
#define PWM_PIN 3
|
||||||
#define RESET_PIN A3
|
#define RESET_PIN A3
|
||||||
|
|
|
@ -12,6 +12,7 @@
|
||||||
|
|
||||||
#define DDS_REFCLK_DEFAULT 9600
|
#define DDS_REFCLK_DEFAULT 9600
|
||||||
#include <HamShield.h>
|
#include <HamShield.h>
|
||||||
|
#include <DDS.h>
|
||||||
|
|
||||||
#define PWM_PIN 3
|
#define PWM_PIN 3
|
||||||
#define RESET_PIN A3
|
#define RESET_PIN A3
|
||||||
|
|
|
@ -12,7 +12,7 @@
|
||||||
* '6' => turn robot right
|
* '6' => turn robot right
|
||||||
* '2' => move robot forward
|
* '2' => move robot forward
|
||||||
* '5' => tell robot to send morse code identity
|
* '5' => tell robot to send morse code identity
|
||||||
/*
|
*/
|
||||||
|
|
||||||
#include <ArduinoRobot.h> // include the robot library
|
#include <ArduinoRobot.h> // include the robot library
|
||||||
#include <HamShield.h>
|
#include <HamShield.h>
|
||||||
|
|
|
@ -11,6 +11,7 @@
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include <HamShield.h>
|
#include <HamShield.h>
|
||||||
|
#include <DDS.h>
|
||||||
#include "varicode.h"
|
#include "varicode.h"
|
||||||
|
|
||||||
#define PWM_PIN 3
|
#define PWM_PIN 3
|
||||||
|
|
|
@ -11,6 +11,7 @@
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include <HamShield.h>
|
#include <HamShield.h>
|
||||||
|
#include <DDS.h>
|
||||||
#include "varicode.h"
|
#include "varicode.h"
|
||||||
|
|
||||||
#define PWM_PIN 3
|
#define PWM_PIN 3
|
||||||
|
|
|
@ -51,7 +51,7 @@ void setup() {
|
||||||
|
|
||||||
|
|
||||||
void loop() {
|
void loop() {
|
||||||
if(radio.waitForChannel(1000,2000, rssi)) { // Wait forever for calling frequency to open, then wait 2 seconds for breakers
|
if(radio.waitForChannel(1000,2000, -90)) { // Wait forever for calling frequency to open, then wait 2 seconds for breakers
|
||||||
radio.setModeTransmit(); // Turn on the transmitter
|
radio.setModeTransmit(); // Turn on the transmitter
|
||||||
delay(250); // Wait a moment
|
delay(250); // Wait a moment
|
||||||
radio.SSTVTestPattern(MARTIN1); // send a MARTIN1 test pattern
|
radio.SSTVTestPattern(MARTIN1); // send a MARTIN1 test pattern
|
||||||
|
|
|
@ -14,6 +14,7 @@
|
||||||
#define DDS_REFCLK_DEFAULT (34965/2)
|
#define DDS_REFCLK_DEFAULT (34965/2)
|
||||||
|
|
||||||
#include <HamShield.h>
|
#include <HamShield.h>
|
||||||
|
#include <DDS.h>
|
||||||
|
|
||||||
#define PWM_PIN 3
|
#define PWM_PIN 3
|
||||||
#define RESET_PIN A3
|
#define RESET_PIN A3
|
||||||
|
|
|
@ -1,89 +0,0 @@
|
||||||
#ifndef SimpleFIFO_h
|
|
||||||
#define SimpleFIFO_h
|
|
||||||
/*
|
|
||||||
||
|
|
||||||
|| @file SimpleFIFO.h
|
|
||||||
|| @version 1.2
|
|
||||||
|| @author Alexander Brevig
|
|
||||||
|| @contact alexanderbrevig@gmail.com
|
|
||||||
||
|
|
||||||
|| @description
|
|
||||||
|| | A simple FIFO class, mostly for primitive types but can be used with classes if assignment to int is allowed
|
|
||||||
|| | This FIFO is not dynamic, so be sure to choose an appropriate size for it
|
|
||||||
|| #
|
|
||||||
||
|
|
||||||
|| @license
|
|
||||||
|| | Copyright (c) 2010 Alexander Brevig
|
|
||||||
|| | This library is free software; you can redistribute it and/or
|
|
||||||
|| | modify it under the terms of the GNU Lesser General Public
|
|
||||||
|| | License as published by the Free Software Foundation; version
|
|
||||||
|| | 2.1 of the License.
|
|
||||||
|| |
|
|
||||||
|| | This library is distributed in the hope that it will be useful,
|
|
||||||
|| | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
|| | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
||||||
|| | Lesser General Public License for more details.
|
|
||||||
|| |
|
|
||||||
|| | You should have received a copy of the GNU Lesser General Public
|
|
||||||
|| | License along with this library; if not, write to the Free Software
|
|
||||||
|| | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
||||||
|| #
|
|
||||||
||
|
|
||||||
*/
|
|
||||||
template<typename T, int rawSize>
|
|
||||||
class SimpleFIFO {
|
|
||||||
public:
|
|
||||||
const int size; //speculative feature, in case it's needed
|
|
||||||
|
|
||||||
SimpleFIFO();
|
|
||||||
|
|
||||||
T dequeue(); //get next element
|
|
||||||
bool enqueue( T element ); //add an element
|
|
||||||
T peek() const; //get the next element without releasing it from the FIFO
|
|
||||||
void flush(); //[1.1] reset to default state
|
|
||||||
|
|
||||||
//how many elements are currently in the FIFO?
|
|
||||||
unsigned char count() { return numberOfElements; }
|
|
||||||
|
|
||||||
private:
|
|
||||||
#ifndef SimpleFIFO_NONVOLATILE
|
|
||||||
volatile unsigned char numberOfElements;
|
|
||||||
volatile unsigned char nextIn;
|
|
||||||
volatile unsigned char nextOut;
|
|
||||||
volatile T raw[rawSize];
|
|
||||||
#else
|
|
||||||
unsigned char numberOfElements;
|
|
||||||
unsigned char nextIn;
|
|
||||||
unsigned char nextOut;
|
|
||||||
T raw[rawSize];
|
|
||||||
#endif
|
|
||||||
};
|
|
||||||
|
|
||||||
template<typename T, int rawSize>
|
|
||||||
SimpleFIFO<T,rawSize>::SimpleFIFO() : size(rawSize) {
|
|
||||||
flush();
|
|
||||||
}
|
|
||||||
template<typename T, int rawSize>
|
|
||||||
bool SimpleFIFO<T,rawSize>::enqueue( T element ) {
|
|
||||||
if ( count() >= rawSize ) { return false; }
|
|
||||||
numberOfElements++;
|
|
||||||
nextIn %= size;
|
|
||||||
raw[nextIn] = element;
|
|
||||||
nextIn++; //advance to next index
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
template<typename T, int rawSize>
|
|
||||||
T SimpleFIFO<T,rawSize>::dequeue() {
|
|
||||||
numberOfElements--;
|
|
||||||
nextOut %= size;
|
|
||||||
return raw[ nextOut++];
|
|
||||||
}
|
|
||||||
template<typename T, int rawSize>
|
|
||||||
T SimpleFIFO<T,rawSize>::peek() const {
|
|
||||||
return raw[ nextOut % size];
|
|
||||||
}
|
|
||||||
template<typename T, int rawSize>
|
|
||||||
void SimpleFIFO<T,rawSize>::flush() {
|
|
||||||
nextIn = nextOut = numberOfElements = 0;
|
|
||||||
}
|
|
||||||
#endif
|
|
|
@ -1,738 +0,0 @@
|
||||||
#include <Arduino.h>
|
|
||||||
#include "HamShield.h"
|
|
||||||
#include "SimpleFIFO.h"
|
|
||||||
#include <util/atomic.h>
|
|
||||||
|
|
||||||
#define PHASE_BIT 8
|
|
||||||
#define PHASE_INC 1
|
|
||||||
|
|
||||||
#define PHASE_MAX (SAMPLEPERBIT * PHASE_BIT)
|
|
||||||
#define PHASE_THRES (PHASE_MAX / 2)
|
|
||||||
|
|
||||||
#define BIT_DIFFER(bitline1, bitline2) (((bitline1) ^ (bitline2)) & 0x01)
|
|
||||||
#define EDGE_FOUND(bitline) BIT_DIFFER((bitline), (bitline) >> 1)
|
|
||||||
|
|
||||||
#define PPOOL_SIZE 2
|
|
||||||
|
|
||||||
#define AFSK_SPACE 2200
|
|
||||||
#define AFSK_MARK 1200
|
|
||||||
|
|
||||||
// Timers
|
|
||||||
volatile unsigned long lastTx = 0;
|
|
||||||
volatile unsigned long lastTxEnd = 0;
|
|
||||||
volatile unsigned long lastRx = 0;
|
|
||||||
|
|
||||||
#define T_BIT ((unsigned int)(SAMPLERATE/BITRATE))
|
|
||||||
|
|
||||||
#ifdef PACKET_PREALLOCATE
|
|
||||||
SimpleFIFO<AFSK::Packet *,PPOOL_SIZE> preallocPool;
|
|
||||||
AFSK::Packet preallocPackets[PPOOL_SIZE];
|
|
||||||
#endif
|
|
||||||
|
|
||||||
void AFSK::Encoder::process() {
|
|
||||||
// We're on the start of a byte position, so fetch one
|
|
||||||
if(bitPosition == 0) {
|
|
||||||
if(preamble) { // Still in preamble
|
|
||||||
currentByte = HDLC_PREAMBLE;
|
|
||||||
--preamble; // Decrement by one
|
|
||||||
} else {
|
|
||||||
if(!packet) { // We aren't on a packet, grab one
|
|
||||||
// Unless we already sent enough
|
|
||||||
if(maxTx-- == 0) {
|
|
||||||
stop();
|
|
||||||
lastTxEnd = millis();
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
packet = pBuf.getPacket();
|
|
||||||
if(!packet) { // There actually weren't any
|
|
||||||
stop(); // Stop transmitting and return
|
|
||||||
lastTxEnd = millis();
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
lastTx = millis();
|
|
||||||
currentBytePos = 0;
|
|
||||||
nextByte = HDLC_FRAME; // Our next output should be a frame boundary
|
|
||||||
hdlc = true;
|
|
||||||
}
|
|
||||||
|
|
||||||
// We ran out of actual data, provide an HDLC frame (idle)
|
|
||||||
if(currentBytePos == packet->len && nextByte == 0) {
|
|
||||||
// We also get here if nextByte isn't set, to handle empty frames
|
|
||||||
pBuf.freePacket(packet);
|
|
||||||
packet = pBuf.getPacket(); // Get the next, if any
|
|
||||||
//packet = NULL;
|
|
||||||
currentBytePos = 0;
|
|
||||||
nextByte = 0;
|
|
||||||
currentByte = HDLC_FRAME;
|
|
||||||
hdlc = true;
|
|
||||||
} else {
|
|
||||||
if(nextByte) {
|
|
||||||
// We queued up something other than the actual stream to be sent next
|
|
||||||
currentByte = nextByte;
|
|
||||||
nextByte = 0;
|
|
||||||
} else {
|
|
||||||
// Get the next byte to send, but if it's an HDLC frame, escape it
|
|
||||||
// and queue the real byte for the next cycle.
|
|
||||||
currentByte = packet->getByte();
|
|
||||||
if(currentByte == HDLC_FRAME) {
|
|
||||||
nextByte = currentByte;
|
|
||||||
currentByte = HDLC_ESCAPE;
|
|
||||||
} else {
|
|
||||||
currentBytePos++;
|
|
||||||
}
|
|
||||||
hdlc = false; // If we get here, it will be NRZI bit stuffed
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Pickup the last bit
|
|
||||||
currentBit = currentByte & 0x1;
|
|
||||||
|
|
||||||
if(lastZero == 5) {
|
|
||||||
currentBit = 0; // Force a 0 bit output
|
|
||||||
} else {
|
|
||||||
currentByte >>= 1; // Bit shift it right, for the next round
|
|
||||||
++bitPosition; // Note our increase in position
|
|
||||||
}
|
|
||||||
|
|
||||||
// To handle NRZI 5 bit stuffing, count the bits
|
|
||||||
if(!currentBit || hdlc)
|
|
||||||
lastZero = 0;
|
|
||||||
else
|
|
||||||
++lastZero;
|
|
||||||
|
|
||||||
// NRZI and AFSK uses toggling 0s, "no change" on 1
|
|
||||||
// So, if not a 1, toggle to the opposite tone
|
|
||||||
if(!currentBit)
|
|
||||||
currentTone = !currentTone;
|
|
||||||
|
|
||||||
if(currentTone == 0) {
|
|
||||||
PORTD |= _BV(7);
|
|
||||||
dds->setFrequency(AFSK_SPACE);
|
|
||||||
} else {
|
|
||||||
PORTD &= ~_BV(7);
|
|
||||||
dds->setFrequency(AFSK_MARK);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
bool AFSK::Encoder::start() {
|
|
||||||
if(!done || sending) {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
if(randomWait > millis()) {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
// First real byte is a frame
|
|
||||||
currentBit = 0;
|
|
||||||
lastZero = 0;
|
|
||||||
bitPosition = 0;
|
|
||||||
//bitClock = 0;
|
|
||||||
preamble = 0b110000; // 6.7ms each, 23 = 153ms
|
|
||||||
done = false;
|
|
||||||
hdlc = true;
|
|
||||||
packet = 0x0; // No initial packet, find in the ISR
|
|
||||||
currentBytePos = 0;
|
|
||||||
maxTx = 3;
|
|
||||||
sending = true;
|
|
||||||
nextByte = 0;
|
|
||||||
dds->setFrequency(0);
|
|
||||||
dds->on();
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
void AFSK::Encoder::stop() {
|
|
||||||
randomWait = 0;
|
|
||||||
sending = false;
|
|
||||||
done = true;
|
|
||||||
dds->setFrequency(0);
|
|
||||||
dds->off();
|
|
||||||
}
|
|
||||||
|
|
||||||
AFSK::Decoder::Decoder() {
|
|
||||||
// Initialize the sampler delay line (phase shift)
|
|
||||||
//for(unsigned char i = 0; i < SAMPLEPERBIT/2; i++)
|
|
||||||
// delay_fifo.enqueue(0);
|
|
||||||
}
|
|
||||||
|
|
||||||
bool AFSK::HDLCDecode::hdlcParse(bool bit, SimpleFIFO<uint8_t,HAMSHIELD_AFSK_RX_FIFO_LEN> *fifo) {
|
|
||||||
bool ret = true;
|
|
||||||
|
|
||||||
demod_bits <<= 1;
|
|
||||||
demod_bits |= bit ? 1 : 0;
|
|
||||||
|
|
||||||
// Flag
|
|
||||||
if(demod_bits == HDLC_FRAME) {
|
|
||||||
fifo->enqueue(HDLC_FRAME);
|
|
||||||
rxstart = true;
|
|
||||||
currchar = 0;
|
|
||||||
bit_idx = 0;
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Reset
|
|
||||||
if((demod_bits & HDLC_RESET) == HDLC_RESET) {
|
|
||||||
rxstart = false;
|
|
||||||
lastRx = millis();
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
if(!rxstart) {
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Stuffed?
|
|
||||||
if((demod_bits & 0x3f) == 0x3e)
|
|
||||||
return ret;
|
|
||||||
|
|
||||||
if(demod_bits & 0x01)
|
|
||||||
currchar |= 0x80;
|
|
||||||
|
|
||||||
if(++bit_idx >= 8) {
|
|
||||||
if(currchar == HDLC_FRAME ||
|
|
||||||
currchar == HDLC_RESET ||
|
|
||||||
currchar == HDLC_ESCAPE) {
|
|
||||||
fifo->enqueue(HDLC_ESCAPE);
|
|
||||||
}
|
|
||||||
fifo->enqueue(currchar & 0xff);
|
|
||||||
currchar = 0;
|
|
||||||
bit_idx = 0;
|
|
||||||
} else {
|
|
||||||
currchar >>= 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename T, int size>
|
|
||||||
class FastRing {
|
|
||||||
private:
|
|
||||||
T ring[size];
|
|
||||||
uint8_t position;
|
|
||||||
public:
|
|
||||||
FastRing(): position(0) {}
|
|
||||||
inline void write(T value) {
|
|
||||||
ring[(position++) & (size-1)] = value;
|
|
||||||
}
|
|
||||||
inline T read() const {
|
|
||||||
return ring[position & (size-1)];
|
|
||||||
}
|
|
||||||
inline T readn(uint8_t n) const {
|
|
||||||
return ring[(position + (~n+1)) & (size-1)];
|
|
||||||
}
|
|
||||||
};
|
|
||||||
// Create a delay line that's half the length of the bit cycle (-90 degrees)
|
|
||||||
FastRing<uint8_t,(T_BIT/2)> delayLine;
|
|
||||||
|
|
||||||
// Handle the A/D converter interrupt (hopefully quickly :)
|
|
||||||
void AFSK::Decoder::process(int8_t curr_sample) {
|
|
||||||
// Run the same through the phase multiplier and butterworth filter
|
|
||||||
iir_x[0] = iir_x[1];
|
|
||||||
iir_x[1] = ((int8_t)delayLine.read() * curr_sample) >> 2;
|
|
||||||
iir_y[0] = iir_y[1];
|
|
||||||
iir_y[1] = iir_x[0] + iir_x[1] + (iir_y[0] >> 1) + (iir_y[0]>>3) + (iir_y[0]>>5);
|
|
||||||
|
|
||||||
// Place this ADC sample into the delay line
|
|
||||||
delayLine.write(curr_sample);
|
|
||||||
|
|
||||||
// Shift the bit into place based on the output of the discriminator
|
|
||||||
sampled_bits <<= 1;
|
|
||||||
sampled_bits |= (iir_y[1] > 0) ? 1 : 0;
|
|
||||||
|
|
||||||
// If we found a 0/1 transition, adjust phases to track
|
|
||||||
if(EDGE_FOUND(sampled_bits)) {
|
|
||||||
if(curr_phase < PHASE_THRES)
|
|
||||||
curr_phase += PHASE_INC;
|
|
||||||
else
|
|
||||||
curr_phase -= PHASE_INC;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Move ahead in phase
|
|
||||||
curr_phase += PHASE_BIT;
|
|
||||||
|
|
||||||
// If we've gone over the phase maximum, we should now have some data
|
|
||||||
if(curr_phase >= PHASE_MAX) {
|
|
||||||
curr_phase %= PHASE_MAX;
|
|
||||||
found_bits <<= 1;
|
|
||||||
|
|
||||||
// If we have 3 bits or more set, it's a positive bit
|
|
||||||
register uint8_t bits = sampled_bits & 0x07;
|
|
||||||
if(bits == 0x07 || bits == 0x06 || bits == 0x05 || bits == 0x03) {
|
|
||||||
found_bits |= 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
hdlc.hdlcParse(!EDGE_FOUND(found_bits), &rx_fifo); // Process it
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// This routine uses a pre-allocated Packet structure
|
|
||||||
// to save on the memory requirements of the stream data
|
|
||||||
bool AFSK::Decoder::read() {
|
|
||||||
bool retVal = false;
|
|
||||||
if(!currentPacket) { // We failed a prior memory allocation
|
|
||||||
currentPacket = pBuf.makePacket(PACKET_MAX_LEN);
|
|
||||||
if(!currentPacket) // Still nothing
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
// While we have AFSK receive FIFO bytes...
|
|
||||||
while(rx_fifo.count()) {
|
|
||||||
// Grab the character
|
|
||||||
char c = rx_fifo.dequeue();
|
|
||||||
bool escaped = false;
|
|
||||||
if(c == HDLC_ESCAPE) { // We received an escaped byte, mark it
|
|
||||||
escaped = true;
|
|
||||||
// Do we want to keep HDLC_ESCAPEs in the packet?
|
|
||||||
//currentPacket->append(HDLC_ESCAPE); // Append without FCS
|
|
||||||
c = rx_fifo.dequeue(); // Reset to the next character
|
|
||||||
}
|
|
||||||
|
|
||||||
// Append all the bytes
|
|
||||||
// This will include unescaped HDLC_FRAME bytes
|
|
||||||
if(c != HDLC_FRAME || escaped) // Append frame if it is escaped
|
|
||||||
currentPacket->appendFCS(c); // Escaped characters and all else go into FCS
|
|
||||||
|
|
||||||
if(currentPacket->len > PACKET_MAX_LEN) {
|
|
||||||
// We've now gone too far and picked up far too many bytes
|
|
||||||
// Cancel this frame, start back at the beginning
|
|
||||||
currentPacket->clear();
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
// We have a frame boundary, if it isn't escaped
|
|
||||||
// If it's escaped, it was part of the data stream
|
|
||||||
if(c == HDLC_FRAME && !escaped) {
|
|
||||||
if(!currentPacket->len) {
|
|
||||||
currentPacket->clear(); // There wasn't any data, restart stream
|
|
||||||
continue;
|
|
||||||
} else {
|
|
||||||
// We have some bytes in stream, check it meets minimum payload length
|
|
||||||
// Min payload is 1 (flag) + 14 (addressing) + 2 (control/PID) + 1 (flag)
|
|
||||||
if(currentPacket->len >= 16) {
|
|
||||||
// We should end up here with a valid FCS due to the appendFCS
|
|
||||||
if(currentPacket->crcOK()) { // Magic number for the CRC check passing
|
|
||||||
// Valid frame, so, let's filter for control + PID
|
|
||||||
// Maximum search distance is 71 bytes to end of the address fields
|
|
||||||
// Skip the HDLC frame start
|
|
||||||
bool filtered = false;
|
|
||||||
for(unsigned char i = 0; i < (currentPacket->len<70?currentPacket->len:71); ++i) {
|
|
||||||
if((currentPacket->getByte() & 0x1) == 0x1) { // Found a byte with LSB set
|
|
||||||
// which marks the final address payload
|
|
||||||
// next two bytes should be the control/PID
|
|
||||||
//if(currentPacket->getByte() == 0x03 && currentPacket->getByte() == 0xf0) {
|
|
||||||
filtered = true;
|
|
||||||
break; // Found it
|
|
||||||
//}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if(!filtered) {
|
|
||||||
// Frame wasn't one we care about, discard
|
|
||||||
currentPacket->clear();
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
// It's all done and formatted, ready to go
|
|
||||||
currentPacket->ready = 1;
|
|
||||||
if(!pBuf.putPacket(currentPacket)) // Put it in the receive FIFO
|
|
||||||
pBuf.freePacket(currentPacket); // Out of FIFO space, so toss it
|
|
||||||
|
|
||||||
// Allocate a new one of maximum length
|
|
||||||
currentPacket = pBuf.makePacket(PACKET_MAX_LEN);
|
|
||||||
retVal = true;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// Restart the stream
|
|
||||||
currentPacket->clear();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return retVal; // This is true if we parsed a packet in this flow
|
|
||||||
}
|
|
||||||
|
|
||||||
void AFSK::Decoder::start() {
|
|
||||||
// Do this in start to allocate our first packet
|
|
||||||
currentPacket = pBuf.makePacket(PACKET_MAX_LEN);
|
|
||||||
/* ASSR &= ~(_BV(EXCLK) | _BV(AS2));
|
|
||||||
|
|
||||||
// Do non-inverting PWM on pin OC2B (arduino pin 3) (p.159).
|
|
||||||
// OC2A (arduino pin 11) stays in normal port operation:
|
|
||||||
// COM2B1=1, COM2B0=0, COM2A1=0, COM2A0=0
|
|
||||||
// Mode 1 - Phase correct PWM
|
|
||||||
TCCR2A = (TCCR2A | _BV(COM2B1)) & ~(_BV(COM2B0) | _BV(COM2A1) | _BV(COM2A0)) |
|
|
||||||
_BV(WGM21) | _BV(WGM20);
|
|
||||||
// No prescaler (p.162)
|
|
||||||
TCCR2B = (TCCR2B & ~(_BV(CS22) | _BV(CS21))) | _BV(CS20) | _BV(WGM22);
|
|
||||||
|
|
||||||
OCR2A = pow(2,COMPARE_BITS)-1;
|
|
||||||
OCR2B = 0;
|
|
||||||
// Configure the ADC and Timer1 to trigger automatic interrupts
|
|
||||||
TCCR1A = 0;
|
|
||||||
TCCR1B = _BV(CS11) | _BV(WGM13) | _BV(WGM12);
|
|
||||||
ICR1 = ((F_CPU / 8) / REFCLK) - 1;
|
|
||||||
ADMUX = _BV(REFS0) | _BV(ADLAR) | 0; // Channel 0, shift result left (ADCH used)
|
|
||||||
DDRC &= ~_BV(0);
|
|
||||||
PORTC &= ~_BV(0);
|
|
||||||
DIDR0 |= _BV(0);
|
|
||||||
ADCSRB = _BV(ADTS2) | _BV(ADTS1) | _BV(ADTS0);
|
|
||||||
ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADATE) | _BV(ADIE) | _BV(ADPS2); // | _BV(ADPS0); */
|
|
||||||
}
|
|
||||||
|
|
||||||
AFSK::PacketBuffer::PacketBuffer() {
|
|
||||||
nextPacketIn = 0;
|
|
||||||
nextPacketOut = 0;
|
|
||||||
inBuffer = 0;
|
|
||||||
for(unsigned char i = 0; i < PACKET_BUFFER_SIZE; ++i) {
|
|
||||||
packets[i] = 0x0;
|
|
||||||
}
|
|
||||||
#ifdef PACKET_PREALLOCATE
|
|
||||||
for(unsigned char i = 0; i < PPOOL_SIZE; ++i) {
|
|
||||||
// Put some empty packets in the FIFO
|
|
||||||
preallocPool.enqueue(&preallocPackets[i]);
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
unsigned char AFSK::PacketBuffer::readyCount() volatile {
|
|
||||||
unsigned char i;
|
|
||||||
unsigned int cnt = 0;
|
|
||||||
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
||||||
for(i = 0; i < PACKET_BUFFER_SIZE; ++i) {
|
|
||||||
if(packets[i] && packets[i]->ready)
|
|
||||||
++cnt;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return cnt;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Return NULL on empty packet buffers
|
|
||||||
AFSK::Packet *AFSK::PacketBuffer::getPacket() volatile {
|
|
||||||
unsigned char i = 0;
|
|
||||||
AFSK::Packet *p = NULL;
|
|
||||||
|
|
||||||
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
||||||
if(inBuffer == 0) {
|
|
||||||
return 0x0;
|
|
||||||
}
|
|
||||||
|
|
||||||
do {
|
|
||||||
p = packets[nextPacketOut];
|
|
||||||
if(p) {
|
|
||||||
packets[nextPacketOut] = 0x0;
|
|
||||||
--inBuffer;
|
|
||||||
}
|
|
||||||
nextPacketOut = ++nextPacketOut % PACKET_BUFFER_SIZE;
|
|
||||||
++i;
|
|
||||||
} while(!p && i<PACKET_BUFFER_SIZE);
|
|
||||||
|
|
||||||
// Return whatever we found, if anything
|
|
||||||
}
|
|
||||||
return p;
|
|
||||||
}
|
|
||||||
|
|
||||||
//void Packet::init(uint8_t *buf, unsigned int dlen, bool freeData) {
|
|
||||||
void AFSK::Packet::init(unsigned short dlen) {
|
|
||||||
//data = (unsigned char *)buf;
|
|
||||||
ready = 0;
|
|
||||||
#ifdef PACKET_PREALLOCATE
|
|
||||||
freeData = 0;
|
|
||||||
maxLen = PACKET_MAX_LEN; // Put it here instead
|
|
||||||
#else
|
|
||||||
freeData = 1;
|
|
||||||
dataPtr = (uint8_t *)malloc(dlen+16);
|
|
||||||
maxLen = dlen; // Put it here instead
|
|
||||||
#endif
|
|
||||||
type = PACKET_STATIC;
|
|
||||||
len = 0; // We had a length, but don't put it here.
|
|
||||||
dataPos = dataPtr;
|
|
||||||
readPos = dataPtr;
|
|
||||||
fcs = 0xffff;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Allocate a new packet with a data buffer as set
|
|
||||||
AFSK::Packet *AFSK::PacketBuffer::makePacket(unsigned short dlen) {
|
|
||||||
AFSK::Packet *p;
|
|
||||||
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
||||||
//Packet *p = findPooledPacket();
|
|
||||||
#ifdef PACKET_PREALLOCATE
|
|
||||||
if(preallocPool.count())
|
|
||||||
p = preallocPool.dequeue();
|
|
||||||
else p = NULL;
|
|
||||||
#else
|
|
||||||
p = new Packet(); //(Packet *)malloc(sizeof(Packet));
|
|
||||||
#endif
|
|
||||||
if(p) // If allocated
|
|
||||||
p->init(dlen);
|
|
||||||
}
|
|
||||||
return p; // Passes through a null on failure.
|
|
||||||
}
|
|
||||||
|
|
||||||
// Free a packet struct, mainly convenience
|
|
||||||
void AFSK::PacketBuffer::freePacket(Packet *p) {
|
|
||||||
if(!p)
|
|
||||||
return;
|
|
||||||
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
||||||
#ifdef PACKET_PREALLOCATE
|
|
||||||
preallocPool.enqueue(p);
|
|
||||||
#else
|
|
||||||
p->free();
|
|
||||||
/*unsigned char i;
|
|
||||||
for(i = 0; i < PPOOL_SIZE; ++i)
|
|
||||||
if(p == &(pPool[i]))
|
|
||||||
break;
|
|
||||||
if(i < PPOOL_SIZE)
|
|
||||||
pStatus &= ~(1<<i);*/
|
|
||||||
delete p;
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Put a packet onto the buffer array
|
|
||||||
bool AFSK::PacketBuffer::putPacket(Packet *p) volatile {
|
|
||||||
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
||||||
if(inBuffer >= PACKET_BUFFER_SIZE) {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
packets[nextPacketIn] = p;
|
|
||||||
nextPacketIn = ++nextPacketIn % PACKET_BUFFER_SIZE;
|
|
||||||
++inBuffer;
|
|
||||||
}
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Print a single byte to the data array
|
|
||||||
size_t AFSK::Packet::write(uint8_t c) {
|
|
||||||
return (appendFCS(c)?1:0);
|
|
||||||
}
|
|
||||||
|
|
||||||
size_t AFSK::Packet::write(const uint8_t *ptr, size_t len) {
|
|
||||||
size_t i;
|
|
||||||
for(i = 0; i < len; ++i)
|
|
||||||
if(!appendFCS(ptr[i]))
|
|
||||||
break;
|
|
||||||
return i;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Add a callsign, flagged as source, destination, or digi
|
|
||||||
// Also tell the routine the SSID to use and if this is the final callsign
|
|
||||||
size_t AFSK::Packet::appendCallsign(const char *callsign, uint8_t ssid, bool final) {
|
|
||||||
uint8_t i;
|
|
||||||
for(i = 0; i < strlen(callsign) && i < 6; i++) {
|
|
||||||
appendFCS(callsign[i]<<1);
|
|
||||||
}
|
|
||||||
if(i < 6) {
|
|
||||||
for(;i<6;i++) {
|
|
||||||
appendFCS(' '<<1);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
uint8_t ssidField = (ssid&0xf) << 1;
|
|
||||||
// TODO: Handle digis in the address C bit
|
|
||||||
if(final) {
|
|
||||||
ssidField |= 0b01100001;
|
|
||||||
} else {
|
|
||||||
ssidField |= 0b11100000;
|
|
||||||
}
|
|
||||||
appendFCS(ssidField);
|
|
||||||
}
|
|
||||||
|
|
||||||
#ifdef PACKET_PARSER
|
|
||||||
// Process the AX25 frame and turn it into a bunch of useful strings
|
|
||||||
bool AFSK::Packet::parsePacket() {
|
|
||||||
uint8_t *d = dataPtr;
|
|
||||||
int i;
|
|
||||||
|
|
||||||
// First 7 bytes are destination-ssid
|
|
||||||
for(i = 0; i < 6; i++) {
|
|
||||||
dstCallsign[i] = (*d++)>>1;
|
|
||||||
if(dstCallsign[i] == ' ') {
|
|
||||||
dstCallsign[i] = '\0';
|
|
||||||
}
|
|
||||||
}
|
|
||||||
dstCallsign[6] = '\0';
|
|
||||||
dstSSID = ((*d++)>>1) & 0xF;
|
|
||||||
|
|
||||||
// Next 7 bytes are source-ssid
|
|
||||||
for(i = 0; i < 6; i++) {
|
|
||||||
srcCallsign[i] = (*d++)>>1;
|
|
||||||
if(srcCallsign[i] == ' ') {
|
|
||||||
srcCallsign[i] = '\0';
|
|
||||||
}
|
|
||||||
}
|
|
||||||
srcCallsign[6] = '\0';
|
|
||||||
srcSSID = *d++; // Don't shift yet, we need the LSB
|
|
||||||
|
|
||||||
digipeater[0][0] = '\0'; // Set null in case we have none anyway
|
|
||||||
if((srcSSID & 1) == 0) { // Not the last address field
|
|
||||||
int digi; // Which digi we're on
|
|
||||||
for(digi = 0; digi < 8; digi++) {
|
|
||||||
for(i = 0; i < 6; i++) {
|
|
||||||
digipeater[digi][i] = (*d++)>>1;
|
|
||||||
if(digipeater[digi][i] == ' ') {
|
|
||||||
digipeater[digi][i] = '\0';
|
|
||||||
}
|
|
||||||
}
|
|
||||||
uint8_t last = (*d) & 1;
|
|
||||||
digipeaterSSID[digi] = ((*d++)>>1) & 0xF;
|
|
||||||
if(last == 1)
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
digipeater[digi][6] = '\0';
|
|
||||||
for(digi += 1; digi<8; digi++) { // Empty out the rest of them
|
|
||||||
digipeater[digi][0] = '\0';
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Now handle the SSID itself
|
|
||||||
srcSSID >>= 1;
|
|
||||||
srcSSID &= 0xF;
|
|
||||||
|
|
||||||
// After the address parsing, we end up on the control field
|
|
||||||
control = *d++;
|
|
||||||
// We have a PID if control type is U or I
|
|
||||||
// Control & 1 == 0 == I frame
|
|
||||||
// Control & 3 == 3 == U frame
|
|
||||||
if((control & 1) == 0 || (control & 3) == 3)
|
|
||||||
pid = *d++;
|
|
||||||
else pid = 0;
|
|
||||||
|
|
||||||
// If there is no PID, we have no data
|
|
||||||
if(!pid) {
|
|
||||||
iFrameData = NULL;
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
// At this point, we've walked far enough along that data is just at d
|
|
||||||
iFrameData = d;
|
|
||||||
|
|
||||||
// Cheat a little by setting the first byte of the FCS to 0, making it a string
|
|
||||||
// First FCS byte is found at -2, HDLC flags aren't in this buffer
|
|
||||||
dataPtr[len-2] = '\0';
|
|
||||||
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
void AFSK::Packet::printPacket(Stream *s) {
|
|
||||||
uint8_t i;
|
|
||||||
#ifdef PACKET_PARSER
|
|
||||||
if(!parsePacket()) {
|
|
||||||
s->print(F("Packet not valid"));
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
s->print(srcCallsign);
|
|
||||||
if(srcSSID > 0) {
|
|
||||||
s->write('-');
|
|
||||||
s->print(srcSSID);
|
|
||||||
}
|
|
||||||
s->print(F(" > "));
|
|
||||||
s->print(dstCallsign);
|
|
||||||
if(dstSSID > 0) {
|
|
||||||
s->write('-');
|
|
||||||
s->print(dstSSID);
|
|
||||||
}
|
|
||||||
s->write(' ');
|
|
||||||
if(digipeater[0][0] != '\0') {
|
|
||||||
s->print(F("via "));
|
|
||||||
for(i = 0; i < 8; i++) {
|
|
||||||
if(digipeater[i][0] == '\0')
|
|
||||||
break;
|
|
||||||
s->print(digipeater[i]);
|
|
||||||
if(digipeaterSSID[i] != 0) {
|
|
||||||
s->write('-');
|
|
||||||
s->print(digipeaterSSID[i]);
|
|
||||||
}
|
|
||||||
if((digipeaterSSID[i] & _BV(7)) == _BV(7)) {
|
|
||||||
s->write('*'); // Digipeated already
|
|
||||||
}
|
|
||||||
// If we might have more, check to add a comma
|
|
||||||
if(i < 7 && digipeater[i+1][0] != '\0') {
|
|
||||||
s->write(',');
|
|
||||||
}
|
|
||||||
s->write(' ');
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// This is an S frame, we can only print control info
|
|
||||||
if(control & 3 == 1) {
|
|
||||||
switch((control>>2)&3) {
|
|
||||||
case 0:
|
|
||||||
s->print(F("RR"));
|
|
||||||
break;
|
|
||||||
case 1:
|
|
||||||
s->print(F("RNR"));
|
|
||||||
break;
|
|
||||||
case 2:
|
|
||||||
s->print(F("REJ"));
|
|
||||||
break;
|
|
||||||
case 3: // Undefined
|
|
||||||
s->print(F("unk"));
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
// Use a + to indicate poll bit
|
|
||||||
if(control & _BV(4) == _BV(4)) {
|
|
||||||
s->write('+');
|
|
||||||
}
|
|
||||||
} else if((control & 3) == 3) { // U Frame
|
|
||||||
s->print(F("U("));
|
|
||||||
s->print(control, HEX);
|
|
||||||
s->write(',');
|
|
||||||
s->print(pid, HEX);
|
|
||||||
s->print(F(") "));
|
|
||||||
} else if((control & 1) == 0) { // I Frame
|
|
||||||
s->print(F("I("));
|
|
||||||
s->print(control, HEX);
|
|
||||||
s->write(',');
|
|
||||||
s->print(pid, HEX);
|
|
||||||
s->print(F(") "));
|
|
||||||
}
|
|
||||||
s->print(F("len "));
|
|
||||||
s->print(len);
|
|
||||||
s->print(F(": "));
|
|
||||||
s->print((char *)iFrameData);
|
|
||||||
s->println();
|
|
||||||
#else // no packet parser, do a rudimentary print
|
|
||||||
// Second 6 bytes are source callsign
|
|
||||||
for(i=7; i<13; i++) {
|
|
||||||
s->write(*(dataPtr+i)>>1);
|
|
||||||
}
|
|
||||||
// SSID
|
|
||||||
s->write('-');
|
|
||||||
s->print((*(dataPtr+13) >> 1) & 0xF);
|
|
||||||
s->print(F(" -> "));
|
|
||||||
// First 6 bytes are destination callsign
|
|
||||||
for(i=0; i<6; i++) {
|
|
||||||
s->write(*(dataPtr+i)>>1);
|
|
||||||
}
|
|
||||||
// SSID
|
|
||||||
s->write('-');
|
|
||||||
s->print((*(dataPtr+6) >> 1) & 0xF);
|
|
||||||
// Control/PID next two bytes
|
|
||||||
// Skip those, print payload
|
|
||||||
for(i = 15; i<len; i++) {
|
|
||||||
s->write(*(dataPtr+i));
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
// Determine what we want to do on this ADC tick.
|
|
||||||
void AFSK::timer() {
|
|
||||||
static uint8_t tcnt = 0;
|
|
||||||
if(++tcnt == T_BIT && encoder.isSending()) {
|
|
||||||
PORTD |= _BV(6);
|
|
||||||
// Only run the encoder every 8th tick
|
|
||||||
// This is actually DDS RefClk / 1200 = 8, set as T_BIT
|
|
||||||
// A different refclk needs a different value
|
|
||||||
encoder.process();
|
|
||||||
tcnt = 0;
|
|
||||||
PORTD &= ~_BV(6);
|
|
||||||
} else {
|
|
||||||
decoder.process(((int8_t)(ADCH - 128)));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void AFSK::start(DDS *dds) {
|
|
||||||
afskEnabled = true;
|
|
||||||
encoder.setDDS(dds);
|
|
||||||
decoder.start();
|
|
||||||
}
|
|
|
@ -1,301 +0,0 @@
|
||||||
#ifndef _AFSK_H_
|
|
||||||
#define _AFSK_H_
|
|
||||||
|
|
||||||
#include <Arduino.h>
|
|
||||||
#include <SimpleFIFO.h>
|
|
||||||
#include <DDS.h>
|
|
||||||
|
|
||||||
#define SAMPLERATE 9600
|
|
||||||
#define BITRATE 1200
|
|
||||||
|
|
||||||
#define SAMPLEPERBIT (SAMPLERATE / BITRATE)
|
|
||||||
|
|
||||||
#define RX_FIFO_LEN 16
|
|
||||||
|
|
||||||
#define PACKET_BUFFER_SIZE 2
|
|
||||||
#define PACKET_STATIC 0
|
|
||||||
|
|
||||||
// Enable the packet parser which will tokenize the AX25 frame into easy strings
|
|
||||||
#define PACKET_PARSER
|
|
||||||
|
|
||||||
// If this is set, all the packet buffers will be pre-allocated at compile time
|
|
||||||
// This will use more RAM, but can make it easier to do memory planning.
|
|
||||||
// TODO: Make this actually work right and not crash.
|
|
||||||
#define PACKET_PREALLOCATE
|
|
||||||
|
|
||||||
// This is with all the digis, two addresses, and full payload
|
|
||||||
// Dst(7) + Src(7) + Digis(56) + Ctl(1) + PID(1) + Data(0-256) + FCS(2)
|
|
||||||
#define PACKET_MAX_LEN 330
|
|
||||||
// Minimum is Dst + Src + Ctl + FCS
|
|
||||||
#define AX25_PACKET_HEADER_MINLEN 17
|
|
||||||
|
|
||||||
// HDLC framing bits
|
|
||||||
#define HDLC_FRAME 0x7E
|
|
||||||
#define HDLC_RESET 0x7F
|
|
||||||
#define HDLC_PREAMBLE 0x00
|
|
||||||
#define HDLC_ESCAPE 0x1B
|
|
||||||
#define HDLC_TAIL 0x1C
|
|
||||||
|
|
||||||
class AFSK {
|
|
||||||
private:
|
|
||||||
volatile bool afskEnabled;
|
|
||||||
public:
|
|
||||||
bool enabled() { return afskEnabled; };
|
|
||||||
|
|
||||||
class Packet:public Print {
|
|
||||||
public:
|
|
||||||
Packet():Print() {};
|
|
||||||
virtual size_t write(uint8_t);
|
|
||||||
// Stock virtual method does what we want here.
|
|
||||||
//virtual size_t write(const char *);
|
|
||||||
virtual size_t write(const uint8_t *, size_t);
|
|
||||||
using Print::write;
|
|
||||||
unsigned char ready : 1;
|
|
||||||
unsigned char type : 2;
|
|
||||||
unsigned char freeData : 1;
|
|
||||||
unsigned short len;
|
|
||||||
unsigned short maxLen;
|
|
||||||
//void init(uint8_t *buf, unsigned int dlen, bool freeData);
|
|
||||||
void init(unsigned short dlen);
|
|
||||||
inline void free() {
|
|
||||||
if(freeData)
|
|
||||||
::free(dataPtr);
|
|
||||||
}
|
|
||||||
inline const unsigned char getByte(void) {
|
|
||||||
return *readPos++;
|
|
||||||
}
|
|
||||||
inline const unsigned char getByte(uint16_t p) {
|
|
||||||
return *(dataPtr+p);
|
|
||||||
}
|
|
||||||
inline void start() {
|
|
||||||
fcs = 0xffff;
|
|
||||||
// No longer put an explicit frame start here
|
|
||||||
//*dataPos++ = HDLC_ESCAPE;
|
|
||||||
//*dataPos++ = HDLC_FRAME;
|
|
||||||
//len = 2;
|
|
||||||
len = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
inline bool append(char c) {
|
|
||||||
if(len < maxLen) {
|
|
||||||
++len;
|
|
||||||
*dataPos++ = c;
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
#define UPDATE_FCS(d) e=fcs^(d); f=e^(e<<4); fcs=(fcs>>8)^(f<<8)^(f<<3)^(f>>4)
|
|
||||||
//#define UPDATE_FCS(d) s=(d)^(fcs>>8); t=s^(s>>4); fcs=(fcs<<8)^t^(t<<5)^(t<<12)
|
|
||||||
inline bool appendFCS(unsigned char c) {
|
|
||||||
register unsigned char e, f;
|
|
||||||
if(len < maxLen - 4) { // Leave room for FCS/HDLC
|
|
||||||
append(c);
|
|
||||||
UPDATE_FCS(c);
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
size_t appendCallsign(const char *callsign, uint8_t ssid, bool final = false);
|
|
||||||
|
|
||||||
inline void finish() {
|
|
||||||
append(~(fcs & 0xff));
|
|
||||||
append(~((fcs>>8) & 0xff));
|
|
||||||
// No longer append the frame boundaries themselves
|
|
||||||
//append(HDLC_ESCAPE);
|
|
||||||
//append(HDLC_FRAME);
|
|
||||||
ready = 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
inline void clear() {
|
|
||||||
fcs = 0xffff;
|
|
||||||
len = 0;
|
|
||||||
readPos = dataPtr;
|
|
||||||
dataPos = dataPtr;
|
|
||||||
}
|
|
||||||
|
|
||||||
inline bool crcOK() {
|
|
||||||
return (fcs == 0xF0B8);
|
|
||||||
}
|
|
||||||
#ifdef PACKET_PARSER
|
|
||||||
bool parsePacket();
|
|
||||||
#endif
|
|
||||||
void printPacket(Stream *s);
|
|
||||||
private:
|
|
||||||
#ifdef PACKET_PREALLOCATE
|
|
||||||
uint8_t dataPtr[PACKET_MAX_LEN]; // 256 byte I frame + headers max of 78
|
|
||||||
#else
|
|
||||||
uint8_t *dataPtr;
|
|
||||||
#endif
|
|
||||||
#ifdef PACKET_PARSER
|
|
||||||
char srcCallsign[7];
|
|
||||||
uint8_t srcSSID;
|
|
||||||
char dstCallsign[7];
|
|
||||||
uint8_t dstSSID;
|
|
||||||
char digipeater[8][7];
|
|
||||||
uint8_t digipeaterSSID[8];
|
|
||||||
uint8_t *iFrameData;
|
|
||||||
uint8_t length;
|
|
||||||
uint8_t control;
|
|
||||||
uint8_t pid;
|
|
||||||
#endif
|
|
||||||
uint8_t *dataPos, *readPos;
|
|
||||||
unsigned short fcs;
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
class PacketBuffer {
|
|
||||||
public:
|
|
||||||
// Initialize the buffers
|
|
||||||
PacketBuffer();
|
|
||||||
// How many packets are in the buffer?
|
|
||||||
unsigned char count() volatile { return inBuffer; };
|
|
||||||
// And how many of those are ready?
|
|
||||||
unsigned char readyCount() volatile;
|
|
||||||
// Retrieve the next packet
|
|
||||||
Packet *getPacket() volatile;
|
|
||||||
// Create a packet structure as needed
|
|
||||||
// This does not place it in the queue
|
|
||||||
static Packet *makePacket(unsigned short);
|
|
||||||
// Conveniently free packet memory
|
|
||||||
static void freePacket(Packet *);
|
|
||||||
// Place a packet into the buffer
|
|
||||||
bool putPacket(Packet *) volatile;
|
|
||||||
private:
|
|
||||||
volatile unsigned char inBuffer;
|
|
||||||
Packet * volatile packets[PACKET_BUFFER_SIZE];
|
|
||||||
volatile unsigned char nextPacketIn;
|
|
||||||
volatile unsigned char nextPacketOut;
|
|
||||||
};
|
|
||||||
|
|
||||||
class Encoder {
|
|
||||||
public:
|
|
||||||
Encoder() {
|
|
||||||
randomWait = 1000; // At the very begin, wait at least one second
|
|
||||||
sending = false;
|
|
||||||
done = true;
|
|
||||||
packet = 0x0;
|
|
||||||
currentBytePos = 0;
|
|
||||||
nextByte = 0;
|
|
||||||
}
|
|
||||||
void setDDS(DDS *d) { dds = d; }
|
|
||||||
volatile inline bool isSending() volatile {
|
|
||||||
return sending;
|
|
||||||
}
|
|
||||||
volatile inline bool isDone() volatile {
|
|
||||||
return done;
|
|
||||||
}
|
|
||||||
volatile inline bool hasPackets() volatile {
|
|
||||||
return (pBuf.count() > 0);
|
|
||||||
}
|
|
||||||
inline bool putPacket(Packet *packet) {
|
|
||||||
return pBuf.putPacket(packet);
|
|
||||||
}
|
|
||||||
inline void setRandomWait() {
|
|
||||||
randomWait = 250 + (rand() % 1000) + millis();
|
|
||||||
}
|
|
||||||
bool start();
|
|
||||||
void stop();
|
|
||||||
void process();
|
|
||||||
private:
|
|
||||||
volatile bool sending;
|
|
||||||
byte currentByte;
|
|
||||||
byte currentBit : 1;
|
|
||||||
byte currentTone : 1;
|
|
||||||
byte lastZero : 3;
|
|
||||||
byte bitPosition : 3;
|
|
||||||
byte preamble : 6;
|
|
||||||
//byte bitClock;
|
|
||||||
bool hdlc;
|
|
||||||
byte nextByte;
|
|
||||||
byte maxTx;
|
|
||||||
Packet *packet;
|
|
||||||
PacketBuffer pBuf;
|
|
||||||
unsigned int currentBytePos;
|
|
||||||
volatile unsigned long randomWait;
|
|
||||||
volatile bool done;
|
|
||||||
DDS *dds;
|
|
||||||
};
|
|
||||||
|
|
||||||
class HDLCDecode {
|
|
||||||
public:
|
|
||||||
bool hdlcParse(bool, SimpleFIFO<uint8_t,RX_FIFO_LEN> *fifo);
|
|
||||||
volatile bool rxstart;
|
|
||||||
private:
|
|
||||||
uint8_t demod_bits;
|
|
||||||
uint8_t bit_idx;
|
|
||||||
uint8_t currchar;
|
|
||||||
};
|
|
||||||
|
|
||||||
class Decoder {
|
|
||||||
public:
|
|
||||||
Decoder();
|
|
||||||
void start();
|
|
||||||
bool read();
|
|
||||||
void process(int8_t);
|
|
||||||
inline bool dataAvailable() {
|
|
||||||
return (rx_fifo.count() > 0);
|
|
||||||
}
|
|
||||||
inline uint8_t getByte() {
|
|
||||||
return rx_fifo.dequeue();
|
|
||||||
}
|
|
||||||
inline uint8_t packetCount() volatile {
|
|
||||||
return pBuf.count();
|
|
||||||
}
|
|
||||||
inline Packet *getPacket() {
|
|
||||||
return pBuf.getPacket();
|
|
||||||
}
|
|
||||||
inline bool isReceiving() volatile {
|
|
||||||
return hdlc.rxstart;
|
|
||||||
}
|
|
||||||
private:
|
|
||||||
Packet *currentPacket;
|
|
||||||
//SimpleFIFO<int8_t,SAMPLEPERBIT/2+1> delay_fifo;
|
|
||||||
SimpleFIFO<uint8_t,RX_FIFO_LEN> rx_fifo; // This should be drained fairly often
|
|
||||||
int16_t iir_x[2];
|
|
||||||
int16_t iir_y[2];
|
|
||||||
uint8_t sampled_bits;
|
|
||||||
int8_t curr_phase;
|
|
||||||
uint8_t found_bits;
|
|
||||||
PacketBuffer pBuf;
|
|
||||||
HDLCDecode hdlc;
|
|
||||||
};
|
|
||||||
|
|
||||||
public:
|
|
||||||
inline bool read() {
|
|
||||||
return decoder.read();
|
|
||||||
}
|
|
||||||
volatile inline bool txReady() volatile {
|
|
||||||
if(encoder.isDone() && encoder.hasPackets())
|
|
||||||
return true;
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
volatile inline bool isDone() volatile { return encoder.isDone(); }
|
|
||||||
inline bool txStart() {
|
|
||||||
if(decoder.isReceiving()) {
|
|
||||||
encoder.setRandomWait();
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
return encoder.start();
|
|
||||||
}
|
|
||||||
inline bool putTXPacket(Packet *packet) {
|
|
||||||
bool ret = encoder.putPacket(packet);
|
|
||||||
if(!ret) // No room?
|
|
||||||
PacketBuffer::freePacket(packet);
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
inline Packet *getRXPacket() {
|
|
||||||
return decoder.getPacket();
|
|
||||||
}
|
|
||||||
inline uint8_t rxPacketCount() volatile {
|
|
||||||
return decoder.packetCount();
|
|
||||||
}
|
|
||||||
//unsigned long lastTx;
|
|
||||||
//unsigned long lastRx;
|
|
||||||
void start(DDS *);
|
|
||||||
void timer();
|
|
||||||
Encoder encoder;
|
|
||||||
Decoder decoder;
|
|
||||||
};
|
|
||||||
#endif /* _AFSK_H_ */
|
|
|
@ -1,175 +0,0 @@
|
||||||
#include <Arduino.h>
|
|
||||||
#include "DDS.h"
|
|
||||||
|
|
||||||
// To start the DDS, we use Timer1, set to the reference clock
|
|
||||||
// We use Timer2 for the PWM output, running as fast as feasible
|
|
||||||
void DDS::start() {
|
|
||||||
// Use the clkIO clock rate
|
|
||||||
ASSR &= ~(_BV(EXCLK) | _BV(AS2));
|
|
||||||
|
|
||||||
// First, the timer for the PWM output
|
|
||||||
// Setup the timer to use OC2B (pin 3) in fast PWM mode with a configurable top
|
|
||||||
// Run it without the prescaler
|
|
||||||
#ifdef DDS_PWM_PIN_3
|
|
||||||
TCCR2A = (TCCR2A | _BV(COM2B1)) & ~(_BV(COM2B0) | _BV(COM2A1) | _BV(COM2A0)) |
|
|
||||||
_BV(WGM21) | _BV(WGM20);
|
|
||||||
TCCR2B = (TCCR2B & ~(_BV(CS22) | _BV(CS21))) | _BV(CS20) | _BV(WGM22);
|
|
||||||
#else
|
|
||||||
// Alternatively, use pin 11
|
|
||||||
// Enable output compare on OC2A, toggle mode
|
|
||||||
TCCR2A = _BV(COM2A1) | _BV(WGM21) | _BV(WGM20);
|
|
||||||
//TCCR2A = (TCCR2A | _BV(COM2A1)) & ~(_BV(COM2A0) | _BV(COM2B1) | _BV(COM2B0)) |
|
|
||||||
// _BV(WGM21) | _BV(WGM20);
|
|
||||||
TCCR2B = _BV(CS20);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// Set the top limit, which will be our duty cycle accuracy.
|
|
||||||
// Setting Comparator Bits smaller will allow for higher frequency PWM,
|
|
||||||
// with the loss of resolution.
|
|
||||||
#ifdef DDS_PWM_PIN_3
|
|
||||||
OCR2A = pow(2,COMPARATOR_BITS)-1;
|
|
||||||
OCR2B = 0;
|
|
||||||
#else
|
|
||||||
OCR2A = 0;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef DDS_USE_ONLY_TIMER2
|
|
||||||
TIMSK2 |= _BV(TOIE2);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// Second, setup Timer1 to trigger the ADC interrupt
|
|
||||||
// This lets us use decoding functions that run at the same reference
|
|
||||||
// clock as the DDS.
|
|
||||||
// We use ICR1 as TOP and prescale by 8
|
|
||||||
TCCR1B = _BV(CS10) | _BV(WGM13) | _BV(WGM12);
|
|
||||||
TCCR1A = 0;
|
|
||||||
ICR1 = ((F_CPU / 1) / refclk) - 1;
|
|
||||||
#ifdef DDS_DEBUG_SERIAL
|
|
||||||
Serial.print(F("DDS SysClk: "));
|
|
||||||
Serial.println(F_CPU/8);
|
|
||||||
Serial.print(F("DDS RefClk: "));
|
|
||||||
Serial.println(refclk, DEC);
|
|
||||||
Serial.print(F("DDS ICR1: "));
|
|
||||||
Serial.println(ICR1, DEC);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// Configure the ADC here to automatically run and be triggered off Timer1
|
|
||||||
ADMUX = _BV(REFS0) | _BV(ADLAR) | 0; // Channel 0, shift result left (ADCH used)
|
|
||||||
DDRC &= ~_BV(0);
|
|
||||||
PORTC &= ~_BV(0);
|
|
||||||
DIDR0 |= _BV(0);
|
|
||||||
ADCSRB = _BV(ADTS2) | _BV(ADTS1) | _BV(ADTS0);
|
|
||||||
ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADATE) | _BV(ADIE) | _BV(ADPS2); // | _BV(ADPS0);
|
|
||||||
}
|
|
||||||
|
|
||||||
void DDS::stop() {
|
|
||||||
// TODO: Stop the timers.
|
|
||||||
#ifndef DDS_USE_ONLY_TIMER2
|
|
||||||
TCCR1B = 0;
|
|
||||||
#endif
|
|
||||||
TCCR2B = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Set our current sine wave frequency in Hz
|
|
||||||
ddsAccumulator_t DDS::calcFrequency(unsigned short freq) {
|
|
||||||
// Fo = (M*Fc)/2^N
|
|
||||||
// M = (Fo/Fc)*2^N
|
|
||||||
ddsAccumulator_t newStep;
|
|
||||||
if(refclk == DDS_REFCLK_DEFAULT) {
|
|
||||||
// Try to use precalculated values if possible
|
|
||||||
if(freq == 2200) {
|
|
||||||
newStep = (2200.0 / (DDS_REFCLK_DEFAULT+DDS_REFCLK_OFFSET)) * pow(2,ACCUMULATOR_BITS);
|
|
||||||
} else if (freq == 1200) {
|
|
||||||
newStep = (1200.0 / (DDS_REFCLK_DEFAULT+DDS_REFCLK_OFFSET)) * pow(2,ACCUMULATOR_BITS);
|
|
||||||
} else if(freq == 2400) {
|
|
||||||
newStep = (2400.0 / (DDS_REFCLK_DEFAULT+DDS_REFCLK_OFFSET)) * pow(2,ACCUMULATOR_BITS);
|
|
||||||
} else if (freq == 1500) {
|
|
||||||
newStep = (1500.0 / (DDS_REFCLK_DEFAULT+DDS_REFCLK_OFFSET)) * pow(2,ACCUMULATOR_BITS);
|
|
||||||
} else if (freq == 600) {
|
|
||||||
newStep = (600.0 / (DDS_REFCLK_DEFAULT+DDS_REFCLK_OFFSET)) * pow(2,ACCUMULATOR_BITS);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
newStep = pow(2,ACCUMULATOR_BITS)*freq / (refclk+refclkOffset);
|
|
||||||
}
|
|
||||||
return newStep;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Degrees should be between -360 and +360 (others don't make much sense)
|
|
||||||
void DDS::setPhaseDeg(int16_t degrees) {
|
|
||||||
accumulator = degrees * (pow(2,ACCUMULATOR_BITS)/360.0);
|
|
||||||
}
|
|
||||||
void DDS::changePhaseDeg(int16_t degrees) {
|
|
||||||
accumulator += degrees * (pow(2,ACCUMULATOR_BITS)/360.0);
|
|
||||||
}
|
|
||||||
|
|
||||||
// TODO: Clean this up a bit..
|
|
||||||
void DDS::clockTick() {
|
|
||||||
/* if(running) {
|
|
||||||
accumulator += stepRate;
|
|
||||||
OCR2A = getDutyCycle();
|
|
||||||
}
|
|
||||||
return;*/
|
|
||||||
if(running) {
|
|
||||||
accumulator += stepRate;
|
|
||||||
if(timeLimited && tickDuration == 0) {
|
|
||||||
#ifndef DDS_PWM_PIN_3
|
|
||||||
OCR2A = 0;
|
|
||||||
#else
|
|
||||||
#ifdef DDS_IDLE_HIGH
|
|
||||||
// Set the duty cycle to 50%
|
|
||||||
OCR2B = pow(2,COMPARATOR_BITS)/2;
|
|
||||||
#else
|
|
||||||
// Set duty cycle to 0, effectively off
|
|
||||||
OCR2B = 0;
|
|
||||||
#endif
|
|
||||||
#endif
|
|
||||||
running = false;
|
|
||||||
accumulator = 0;
|
|
||||||
} else {
|
|
||||||
#ifdef DDS_PWM_PIN_3
|
|
||||||
OCR2B = getDutyCycle();
|
|
||||||
#else
|
|
||||||
OCR2A = getDutyCycle();
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
// Reduce our playback duration by one tick
|
|
||||||
tickDuration--;
|
|
||||||
} else {
|
|
||||||
// Hold it low
|
|
||||||
#ifndef DDS_PWM_PIN_3
|
|
||||||
OCR2A = 0;
|
|
||||||
#else
|
|
||||||
#ifdef DDS_IDLE_HIGH
|
|
||||||
// Set the duty cycle to 50%
|
|
||||||
OCR2B = pow(2,COMPARATOR_BITS)/2;
|
|
||||||
#else
|
|
||||||
// Set duty cycle to 0, effectively off
|
|
||||||
OCR2B = 0;
|
|
||||||
#endif
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
uint8_t DDS::getDutyCycle() {
|
|
||||||
#if ACCUMULATOR_BIT_SHIFT >= 24
|
|
||||||
uint16_t phAng;
|
|
||||||
#else
|
|
||||||
uint8_t phAng;
|
|
||||||
#endif
|
|
||||||
if(amplitude == 0) // Shortcut out on no amplitude
|
|
||||||
return 128>>(8-COMPARATOR_BITS);
|
|
||||||
phAng = (accumulator >> ACCUMULATOR_BIT_SHIFT);
|
|
||||||
int8_t position = pgm_read_byte_near(ddsSineTable + phAng); //>>(8-COMPARATOR_BITS);
|
|
||||||
// Apply scaling and return
|
|
||||||
int16_t scaled = position;
|
|
||||||
// output = ((duty * amplitude) / 256) + 128
|
|
||||||
// This keeps amplitudes centered around 50% duty
|
|
||||||
if(amplitude != 255) { // Amplitude is reduced, so do the full math
|
|
||||||
scaled *= amplitude;
|
|
||||||
scaled >>= 8+(8-COMPARATOR_BITS);
|
|
||||||
} else { // Otherwise, only shift for the comparator bits
|
|
||||||
scaled >>= (8-COMPARATOR_BITS);
|
|
||||||
}
|
|
||||||
scaled += 128>>(8-COMPARATOR_BITS);
|
|
||||||
return scaled;
|
|
||||||
}
|
|
|
@ -1,228 +0,0 @@
|
||||||
#ifndef _DDS_H_
|
|
||||||
#define _DDS_H_
|
|
||||||
|
|
||||||
#include <avr/pgmspace.h>
|
|
||||||
|
|
||||||
// Use pin 3 for PWM? If not defined, use pin 11
|
|
||||||
// Quality on pin 3 is higher than on 11, as it can be clocked faster
|
|
||||||
// when the COMPARATOR_BITS value is less than 8
|
|
||||||
#define DDS_PWM_PIN_3
|
|
||||||
|
|
||||||
// Normally, we turn on timer2 and timer1, and have ADC sampling as our clock
|
|
||||||
// Define this to only use Timer2, and not start the ADC clock
|
|
||||||
// #define DDS_USE_ONLY_TIMER2
|
|
||||||
|
|
||||||
// Use a short (16 bit) accumulator. Phase accuracy is reduced, but speed
|
|
||||||
// is increased, along with a reduction in memory use.
|
|
||||||
#define SHORT_ACCUMULATOR
|
|
||||||
|
|
||||||
#ifdef SHORT_ACCUMULATOR
|
|
||||||
#define ACCUMULATOR_BITS 16
|
|
||||||
typedef uint16_t ddsAccumulator_t;
|
|
||||||
#else
|
|
||||||
#define ACCUMULATOR_BITS 32
|
|
||||||
typedef uint32_t ddsAccumulator_t;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// If defined, the timer will idle at 50% duty cycle
|
|
||||||
// This leaves it floating in the centre of the PWM/DAC voltage range
|
|
||||||
#define DDS_IDLE_HIGH
|
|
||||||
|
|
||||||
// Select how fast the PWM is, at the expense of level accuracy.
|
|
||||||
// A faster PWM rate will make for easier filtering of the output wave,
|
|
||||||
// while a slower one will allow for more accurate voltage level outputs,
|
|
||||||
// but will increase the filtering requirements on the output.
|
|
||||||
// 8 = 62.5kHz PWM
|
|
||||||
// 7 = 125kHz PWM
|
|
||||||
// 6 = 250kHz PWM
|
|
||||||
#ifdef DDS_PWM_PIN_3
|
|
||||||
#define COMPARATOR_BITS 6
|
|
||||||
#else // When using pin 11, we always want 8 bits
|
|
||||||
#define COMPARATOR_BITS 8
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// This is how often we'll perform a phase advance, as well as ADC sampling
|
|
||||||
// rate. The higher this value, the smoother the output wave will be, at the
|
|
||||||
// expense of CPU time. It maxes out around 62000 (TBD)
|
|
||||||
// May be overridden in the sketch to improve performance
|
|
||||||
#ifndef DDS_REFCLK_DEFAULT
|
|
||||||
#define DDS_REFCLK_DEFAULT 9600
|
|
||||||
#endif
|
|
||||||
// As each Arduino crystal is a little different, this can be fine tuned to
|
|
||||||
// provide more accurate frequencies. Adjustments in the range of hundreds
|
|
||||||
// is a good start.
|
|
||||||
#ifndef DDS_REFCLK_OFFSET
|
|
||||||
#define DDS_REFCLK_OFFSET 0
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef DDS_USE_ONLY_TIMER2
|
|
||||||
// TODO: Figure out where this clock value is generated from
|
|
||||||
#define DDS_REFCLK_DEFAULT (62500/4)
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// Output some of the calculations and information about the DDS over serial
|
|
||||||
//#define DDS_DEBUG_SERIAL
|
|
||||||
|
|
||||||
// When defined, use the 1024 element sine lookup table. This improves phase
|
|
||||||
// accuracy, at the cost of more flash and CPU requirements.
|
|
||||||
// #define DDS_TABLE_LARGE
|
|
||||||
|
|
||||||
#ifdef DDS_TABLE_LARGE
|
|
||||||
// How many bits to keep from the accumulator to look up in this table
|
|
||||||
#define ACCUMULATOR_BIT_SHIFT (ACCUMULATOR_BITS-10)
|
|
||||||
static const int8_t ddsSineTable[1024] PROGMEM = {
|
|
||||||
0, 0, 1, 2, 3, 3, 4, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 13, 13, 14, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 23, 24,
|
|
||||||
24, 25, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, 39, 39, 40, 41, 42, 42, 43, 44, 44, 45, 46, 47, 47,
|
|
||||||
48, 49, 50, 50, 51, 52, 52, 53, 54, 55, 55, 56, 57, 57, 58, 59, 59, 60, 61, 61, 62, 63, 63, 64, 65, 65, 66, 67, 67, 68, 69, 69,
|
|
||||||
70, 71, 71, 72, 73, 73, 74, 75, 75, 76, 76, 77, 78, 78, 79, 79, 80, 81, 81, 82, 82, 83, 84, 84, 85, 85, 86, 87, 87, 88, 88, 89,
|
|
||||||
89, 90, 90, 91, 91, 92, 93, 93, 94, 94, 95, 95, 96, 96, 97, 97, 98, 98, 99, 99, 100, 100, 101, 101, 102, 102, 102, 103, 103, 104, 104, 105,
|
|
||||||
105, 106, 106, 106, 107, 107, 108, 108, 108, 109, 109, 110, 110, 110, 111, 111, 112, 112, 112, 113, 113, 113, 114, 114, 114, 115, 115, 115, 116, 116, 116, 117,
|
|
||||||
117, 117, 117, 118, 118, 118, 119, 119, 119, 119, 120, 120, 120, 120, 121, 121, 121, 121, 121, 122, 122, 122, 122, 123, 123, 123, 123, 123, 123, 124, 124, 124,
|
|
||||||
124, 124, 124, 124, 125, 125, 125, 125, 125, 125, 125, 125, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126,
|
|
||||||
127, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 125, 125, 125, 125, 125, 125, 125, 125, 124, 124, 124,
|
|
||||||
124, 124, 124, 124, 123, 123, 123, 123, 123, 123, 122, 122, 122, 122, 121, 121, 121, 121, 121, 120, 120, 120, 120, 119, 119, 119, 119, 118, 118, 118, 117, 117,
|
|
||||||
117, 117, 116, 116, 116, 115, 115, 115, 114, 114, 114, 113, 113, 113, 112, 112, 112, 111, 111, 110, 110, 110, 109, 109, 108, 108, 108, 107, 107, 106, 106, 106,
|
|
||||||
105, 105, 104, 104, 103, 103, 102, 102, 102, 101, 101, 100, 100, 99, 99, 98, 98, 97, 97, 96, 96, 95, 95, 94, 94, 93, 93, 92, 91, 91, 90, 90,
|
|
||||||
89, 89, 88, 88, 87, 87, 86, 85, 85, 84, 84, 83, 82, 82, 81, 81, 80, 79, 79, 78, 78, 77, 76, 76, 75, 75, 74, 73, 73, 72, 71, 71,
|
|
||||||
70, 69, 69, 68, 67, 67, 66, 65, 65, 64, 63, 63, 62, 61, 61, 60, 59, 59, 58, 57, 57, 56, 55, 55, 54, 53, 52, 52, 51, 50, 50, 49,
|
|
||||||
48, 47, 47, 46, 45, 44, 44, 43, 42, 42, 41, 40, 39, 39, 38, 37, 36, 36, 35, 34, 33, 33, 32, 31, 30, 30, 29, 28, 27, 27, 26, 25,
|
|
||||||
24, 24, 23, 22, 21, 20, 20, 19, 18, 17, 17, 16, 15, 14, 13, 13, 12, 11, 10, 10, 9, 8, 7, 7, 6, 5, 4, 3, 3, 2, 1, 0,
|
|
||||||
0, 0, -1, -2, -3, -3, -4, -5, -6, -7, -7, -8, -9, -10, -10, -11, -12, -13, -13, -14, -15, -16, -17, -17, -18, -19, -20, -20, -21, -22, -23, -24,
|
|
||||||
-24, -25, -26, -27, -27, -28, -29, -30, -30, -31, -32, -33, -33, -34, -35, -36, -36, -37, -38, -39, -39, -40, -41, -42, -42, -43, -44, -44, -45, -46, -47, -47,
|
|
||||||
-48, -49, -50, -50, -51, -52, -52, -53, -54, -55, -55, -56, -57, -57, -58, -59, -59, -60, -61, -61, -62, -63, -63, -64, -65, -65, -66, -67, -67, -68, -69, -69,
|
|
||||||
-70, -71, -71, -72, -73, -73, -74, -75, -75, -76, -76, -77, -78, -78, -79, -79, -80, -81, -81, -82, -82, -83, -84, -84, -85, -85, -86, -87, -87, -88, -88, -89,
|
|
||||||
-89, -90, -90, -91, -91, -92, -93, -93, -94, -94, -95, -95, -96, -96, -97, -97, -98, -98, -99, -99, -100, -100, -101, -101, -102, -102, -102, -103, -103, -104, -104, -105,
|
|
||||||
-105, -106, -106, -106, -107, -107, -108, -108, -108, -109, -109, -110, -110, -110, -111, -111, -112, -112, -112, -113, -113, -113, -114, -114, -114, -115, -115, -115, -116, -116, -116, -117,
|
|
||||||
-117, -117, -117, -118, -118, -118, -119, -119, -119, -119, -120, -120, -120, -120, -121, -121, -121, -121, -121, -122, -122, -122, -122, -123, -123, -123, -123, -123, -123, -124, -124, -124,
|
|
||||||
-124, -124, -124, -124, -125, -125, -125, -125, -125, -125, -125, -125, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126,
|
|
||||||
-127, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -125, -125, -125, -125, -125, -125, -125, -125, -124, -124, -124,
|
|
||||||
-124, -124, -124, -124, -123, -123, -123, -123, -123, -123, -122, -122, -122, -122, -121, -121, -121, -121, -121, -120, -120, -120, -120, -119, -119, -119, -119, -118, -118, -118, -117, -117,
|
|
||||||
-117, -117, -116, -116, -116, -115, -115, -115, -114, -114, -114, -113, -113, -113, -112, -112, -112, -111, -111, -110, -110, -110, -109, -109, -108, -108, -108, -107, -107, -106, -106, -106,
|
|
||||||
-105, -105, -104, -104, -103, -103, -102, -102, -102, -101, -101, -100, -100, -99, -99, -98, -98, -97, -97, -96, -96, -95, -95, -94, -94, -93, -93, -92, -91, -91, -90, -90,
|
|
||||||
-89, -89, -88, -88, -87, -87, -86, -85, -85, -84, -84, -83, -82, -82, -81, -81, -80, -79, -79, -78, -78, -77, -76, -76, -75, -75, -74, -73, -73, -72, -71, -71,
|
|
||||||
-70, -69, -69, -68, -67, -67, -66, -65, -65, -64, -63, -63, -62, -61, -61, -60, -59, -59, -58, -57, -57, -56, -55, -55, -54, -53, -52, -52, -51, -50, -50, -49,
|
|
||||||
-48, -47, -47, -46, -45, -44, -44, -43, -42, -42, -41, -40, -39, -39, -38, -37, -36, -36, -35, -34, -33, -33, -32, -31, -30, -30, -29, -28, -27, -27, -26, -25,
|
|
||||||
-24, -24, -23, -22, -21, -20, -20, -19, -18, -17, -17, -16, -15, -14, -13, -13, -12, -11, -10, -10, -9, -8, -7, -7, -6, -5, -4, -3, -3, -2, -1, 0
|
|
||||||
};
|
|
||||||
#else
|
|
||||||
#define ACCUMULATOR_BIT_SHIFT (ACCUMULATOR_BITS-8)
|
|
||||||
static const int8_t ddsSineTable[256] PROGMEM = {
|
|
||||||
0, 3, 6, 9, 12, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49,
|
|
||||||
51, 54, 57, 60, 63, 65, 68, 71, 73, 76, 78, 81, 83, 85, 88, 90,
|
|
||||||
92, 94, 96, 98, 100, 102, 104, 106, 107, 109, 111, 112, 113, 115,
|
|
||||||
116, 117, 118, 120, 121, 122, 122, 123, 124, 125, 125, 126, 126,
|
|
||||||
126, 127, 127, 127, 127, 127, 127, 127, 126, 126, 126, 125, 125,
|
|
||||||
124, 123, 122, 122, 121, 120, 118, 117, 116, 115, 113, 112, 111,
|
|
||||||
109, 107, 106, 104, 102, 100, 98, 96, 94, 92, 90, 88, 85, 83, 81,
|
|
||||||
78, 76, 73, 71, 68, 65, 63, 60, 57, 54, 51, 49, 46, 43, 40, 37,
|
|
||||||
34, 31, 28, 25, 22, 19, 16, 12, 9, 6, 3, 0, -3, -6, -9, -12, -16,
|
|
||||||
-19, -22, -25, -28, -31, -34, -37, -40, -43, -46, -49, -51, -54,
|
|
||||||
-57, -60, -63, -65, -68, -71, -73, -76, -78, -81, -83, -85, -88,
|
|
||||||
-90, -92, -94, -96, -98, -100, -102, -104, -106, -107, -109, -111,
|
|
||||||
-112, -113, -115, -116, -117, -118, -120, -121, -122, -122, -123,
|
|
||||||
-124, -125, -125, -126, -126, -126, -127, -127, -127, -127, -127,
|
|
||||||
-127, -127, -126, -126, -126, -125, -125, -124, -123, -122, -122,
|
|
||||||
-121, -120, -118, -117, -116, -115, -113, -112, -111, -109, -107,
|
|
||||||
-106, -104, -102, -100, -98, -96, -94, -92, -90, -88, -85, -83,
|
|
||||||
-81, -78, -76, -73, -71, -68, -65, -63, -60, -57, -54, -51, -49,
|
|
||||||
-46, -43, -40, -37, -34, -31, -28, -25, -22, -19, -16, -12, -9, -6, -3
|
|
||||||
};
|
|
||||||
#endif /* DDS_TABLE_LARGE */
|
|
||||||
|
|
||||||
class DDS {
|
|
||||||
public:
|
|
||||||
DDS(): refclk(DDS_REFCLK_DEFAULT), refclkOffset(DDS_REFCLK_OFFSET),
|
|
||||||
accumulator(0), running(false),
|
|
||||||
timeLimited(false), tickDuration(0), amplitude(255)
|
|
||||||
{};
|
|
||||||
|
|
||||||
// Start all of the timers needed
|
|
||||||
void start();
|
|
||||||
// Is the DDS presently producing a tone?
|
|
||||||
const bool isRunning() { return running; };
|
|
||||||
// Stop the DDS timers
|
|
||||||
void stop();
|
|
||||||
|
|
||||||
// Start and stop the PWM output
|
|
||||||
void on() {
|
|
||||||
timeLimited = false;
|
|
||||||
running = true;
|
|
||||||
}
|
|
||||||
// Provide a duration in ms for the tone
|
|
||||||
void on(unsigned short duration) {
|
|
||||||
// Duration in ticks from milliseconds is:
|
|
||||||
// t = (1/refclk)
|
|
||||||
tickDuration = (unsigned long)((unsigned long)duration * (unsigned long)refclk) / 1000;
|
|
||||||
timeLimited = true;
|
|
||||||
running = true;
|
|
||||||
}
|
|
||||||
void off() {
|
|
||||||
running = false;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Generate a tone for a specific amount of time
|
|
||||||
void play(unsigned short freq, unsigned short duration) {
|
|
||||||
setFrequency(freq);
|
|
||||||
on(duration);
|
|
||||||
}
|
|
||||||
// Blocking version
|
|
||||||
void playWait(unsigned short freq, unsigned short duration) {
|
|
||||||
play(freq, duration);
|
|
||||||
delay(duration);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Use these to get some calculated values for specific frequencies
|
|
||||||
// or to get the current frequency stepping rate.
|
|
||||||
ddsAccumulator_t calcFrequency(unsigned short freq);
|
|
||||||
ddsAccumulator_t getPhaseAdvance() { return stepRate; };
|
|
||||||
|
|
||||||
// Our maximum clock isn't very high, so our highest
|
|
||||||
// frequency supported will fit in a short.
|
|
||||||
void setFrequency(unsigned short freq) { stepRate = calcFrequency(freq); };
|
|
||||||
void setPrecalcFrequency(ddsAccumulator_t freq) { stepRate = freq; };
|
|
||||||
|
|
||||||
// Handle phase shifts
|
|
||||||
void setPhaseDeg(int16_t degrees);
|
|
||||||
void changePhaseDeg(int16_t degrees);
|
|
||||||
|
|
||||||
// Adjustable reference clock. This shoud be done before the timers are
|
|
||||||
// started, or they will need to be restarted. Frequencies will need to
|
|
||||||
// be set again to use the new clock.
|
|
||||||
void setReferenceClock(unsigned long ref) {
|
|
||||||
refclk = ref;
|
|
||||||
}
|
|
||||||
unsigned long getReferenceClock() {
|
|
||||||
return refclk;
|
|
||||||
}
|
|
||||||
|
|
||||||
void setReferenceOffset(int16_t offset) {
|
|
||||||
refclkOffset = offset;
|
|
||||||
}
|
|
||||||
int16_t getReferenceOffset() {
|
|
||||||
return refclkOffset;
|
|
||||||
}
|
|
||||||
|
|
||||||
uint8_t getDutyCycle();
|
|
||||||
|
|
||||||
// Set a scaling factor. To keep things quick, this is a power of 2 value.
|
|
||||||
// Set it with 0 for lowest (which will be off), 8 is highest.
|
|
||||||
void setAmplitude(unsigned char amp) {
|
|
||||||
amplitude = amp;
|
|
||||||
}
|
|
||||||
|
|
||||||
// This is the function called by the ADC_vect ISR to produce the tones
|
|
||||||
void clockTick();
|
|
||||||
|
|
||||||
private:
|
|
||||||
volatile bool running;
|
|
||||||
volatile unsigned long tickDuration;
|
|
||||||
volatile bool timeLimited;
|
|
||||||
volatile unsigned char amplitude;
|
|
||||||
volatile ddsAccumulator_t accumulator;
|
|
||||||
volatile ddsAccumulator_t stepRate;
|
|
||||||
ddsAccumulator_t refclk;
|
|
||||||
int16_t refclkOffset;
|
|
||||||
static DDS *sDDS;
|
|
||||||
};
|
|
||||||
|
|
||||||
#endif /* _DDS_H_ */
|
|
|
@ -1,88 +0,0 @@
|
||||||
#include <HamShield.h>
|
|
||||||
#include "AFSK.h"
|
|
||||||
#include "KISS.h"
|
|
||||||
|
|
||||||
//AFSK::Packet kissPacket;
|
|
||||||
bool inFrame = false;
|
|
||||||
uint8_t kissBuffer[PACKET_MAX_LEN];
|
|
||||||
uint16_t kissLen = 0;
|
|
||||||
|
|
||||||
// Inside the KISS loop, we basically wait for data to come in from the
|
|
||||||
// KISS equipment, and look if we have anything to relay along
|
|
||||||
void KISS::loop() {
|
|
||||||
static bool currentlySending = false;
|
|
||||||
if(radio->afsk.decoder.read() || radio->afsk.rxPacketCount()) {
|
|
||||||
// A true return means something was put onto the packet FIFO
|
|
||||||
// If we actually have data packets in the buffer, process them all now
|
|
||||||
while(radio->afsk.rxPacketCount()) {
|
|
||||||
AFSK::Packet *packet = radio->afsk.getRXPacket();
|
|
||||||
if(packet) {
|
|
||||||
writePacket(packet);
|
|
||||||
AFSK::PacketBuffer::freePacket(packet);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// Check if we have incoming data to turn into a packet
|
|
||||||
while(io->available()) {
|
|
||||||
uint8_t c = (uint8_t)io->read();
|
|
||||||
if(c == KISS_FEND) {
|
|
||||||
if(inFrame && kissLen > 0) {
|
|
||||||
int i;
|
|
||||||
AFSK::Packet *packet = AFSK::PacketBuffer::makePacket(PACKET_MAX_LEN);
|
|
||||||
packet->start();
|
|
||||||
for(i = 0; i < kissLen; i++) {
|
|
||||||
packet->appendFCS(kissBuffer[i]);
|
|
||||||
}
|
|
||||||
packet->finish();
|
|
||||||
radio->afsk.encoder.putPacket(packet);
|
|
||||||
}
|
|
||||||
kissLen = 0;
|
|
||||||
inFrame = false;
|
|
||||||
}
|
|
||||||
// We're inside the boundaries of a FEND
|
|
||||||
if(inFrame) {
|
|
||||||
// Unescape the incoming data
|
|
||||||
if(c == KISS_FESC) {
|
|
||||||
c = io->read();
|
|
||||||
if(c == KISS_TFESC) {
|
|
||||||
c = KISS_FESC;
|
|
||||||
} else {
|
|
||||||
c = KISS_FEND;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
kissBuffer[kissLen++] = c;
|
|
||||||
}
|
|
||||||
if(kissLen == 0 && c != KISS_FEND) {
|
|
||||||
if((c & 0xf) == 0) // First byte<3:0> should be a 0, otherwise we're having options
|
|
||||||
inFrame = true;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if(radio->afsk.txReady()) {
|
|
||||||
radio->setModeTransmit();
|
|
||||||
currentlySending = true;
|
|
||||||
if(!radio->afsk.txStart()) { // Unable to start for some reason
|
|
||||||
radio->setModeReceive();
|
|
||||||
currentlySending = false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if(currentlySending && radio->afsk.encoder.isDone()) {
|
|
||||||
radio->setModeReceive();
|
|
||||||
currentlySending = false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void KISS::writePacket(AFSK::Packet *p) {
|
|
||||||
int i;
|
|
||||||
io->write(KISS_FEND);
|
|
||||||
io->write((uint8_t)0); // Host to TNC port identifier
|
|
||||||
for(i = 0; i < p->len-2; i++) {
|
|
||||||
char c = p->getByte(i);
|
|
||||||
if(c == KISS_FEND || c == KISS_FESC) {
|
|
||||||
io->write(KISS_FESC);
|
|
||||||
io->write((c==KISS_FEND?KISS_TFEND:KISS_TFESC));
|
|
||||||
} else {
|
|
||||||
io->write(c);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
io->write(KISS_FEND);
|
|
||||||
}
|
|
|
@ -1,35 +0,0 @@
|
||||||
#ifndef _KISS_H_
|
|
||||||
#define _KISS_H_
|
|
||||||
|
|
||||||
#include <HamShield.h>
|
|
||||||
#include "AFSK.h"
|
|
||||||
|
|
||||||
#define KISS_FEND 0xC0
|
|
||||||
#define KISS_FESC 0xDB
|
|
||||||
#define KISS_TFEND 0xDC
|
|
||||||
#define KISS_TFESC 0xDD
|
|
||||||
|
|
||||||
class KISS {
|
|
||||||
public:
|
|
||||||
KISS(Stream *_io, HamShield *h, DDS *d) : io(_io), radio(h), dds(d) {}
|
|
||||||
bool read();
|
|
||||||
void writePacket(AFSK::Packet *);
|
|
||||||
void loop();
|
|
||||||
inline void isr() {
|
|
||||||
static uint8_t tcnt = 0;
|
|
||||||
TIFR1 = _BV(ICF1); // Clear the timer flag
|
|
||||||
dds->clockTick();
|
|
||||||
if(++tcnt == (DDS_REFCLK_DEFAULT/9600)) {
|
|
||||||
//PORTD |= _BV(2); // Diagnostic pin (D2)
|
|
||||||
radio->afsk.timer();
|
|
||||||
tcnt = 0;
|
|
||||||
}
|
|
||||||
//PORTD &= ~(_BV(2));
|
|
||||||
}
|
|
||||||
private:
|
|
||||||
Stream *io;
|
|
||||||
HamShield *radio;
|
|
||||||
DDS *dds;
|
|
||||||
};
|
|
||||||
|
|
||||||
#endif /* _KISS_H_ */
|
|
Loading…
Reference in New Issue