11 Commits
1.1.1 ... RPi

Author SHA1 Message Date
morgan
00fd294bde working with RPi 2019-02-04 21:28:59 +00:00
morgan
1b1c9b3f80 fix noTone calls 2019-02-02 21:22:37 +00:00
morgan
467765d892 update tone calls 2019-02-02 21:16:33 +00:00
morgan
844bb6b8c6 finish abstraction for RPi 2019-02-02 21:13:21 +00:00
Morgan Redfield
f7c76eb1ad begin abstracting hardware functions 2019-01-29 21:10:18 -08:00
morgan
76a92a882f remove library control of button 2019-01-29 20:13:45 -08:00
morgan
7427b426b1 allow non-standard digital control pins 2019-01-29 20:09:42 -08:00
Morgan Redfield
6b05b7754d update vox and mic signal strength reading 2019-01-19 11:42:39 -08:00
morgan
6c891c9f32 update example comments 2018-12-09 09:43:41 -08:00
morgan
d65877ad29 update library properties 2018-11-17 11:43:59 -08:00
morgan
dc93752730 temporary fixes for KISS example 2018-11-07 16:45:46 -08:00
8 changed files with 233 additions and 205 deletions

View File

@@ -1,12 +1,12 @@
/* Hamshield /* Hamshield
* Example: DTMF * Example: DTMF
* This is a simple example to demonstrate how to ues DTMF. * This is a simple example to demonstrate how to use DTMF.
* *
* Connect the HamShield to your Arduino. Screw the antenna * Connect the HamShield to your Arduino. Screw the antenna
* into the HamShield RF jack. * into the HamShield RF jack.
* Connect the Arduino to wall power and then to your computer * Connect the Arduino to wall power and then to your computer
* via USB. After uploading this program to your Arduino, open * via USB. After uploading this program to your Arduino, open
* the Serial Monitor. Press the button on the HamShield to * the Serial Monitor. Press the switch on the HamShield to
* begin setup. After setup is complete, type in a DTMF value * begin setup. After setup is complete, type in a DTMF value
* (0-9, A, B, C, D, *, #) and hit enter. The corresponding * (0-9, A, B, C, D, *, #) and hit enter. The corresponding
* DTMF tones will be transmitted. The sketch will also print * DTMF tones will be transmitted. The sketch will also print
@@ -45,7 +45,7 @@ void setup() {
while (digitalRead(SWITCH_PIN)); while (digitalRead(SWITCH_PIN));
// let the AU ot of reset // now we let the AU ot of reset
digitalWrite(RESET_PIN, HIGH); digitalWrite(RESET_PIN, HIGH);
delay(5); // wait for device to come up delay(5); // wait for device to come up
@@ -56,7 +56,7 @@ void setup() {
Serial.println(radio.testConnection() ? "HamShield connection successful" : "HamShield connection failed"); Serial.println(radio.testConnection() ? "HamShield connection successful" : "HamShield connection failed");
// initialize device // initialize device
radio.initialize(); // initializes automatically for UHF 12.5kHz channel radio.initialize();
Serial.println("setting default Radio configuration"); Serial.println("setting default Radio configuration");
@@ -71,11 +71,11 @@ void setup() {
radio.setSQOn(); radio.setSQOn();
//radio.setSQOff(); //radio.setSQOff();
Serial.println("changing frequency"); Serial.println("setting frequency to: ");
freq = 420000; freq = 420000;
radio.frequency(freq); radio.frequency(freq);
Serial.print("new frequency: "); Serial.print(radio.getFrequency());
Serial.println(radio.getFrequency()); Serial.println("kHz");
// set RX volume to minimum to reduce false positives on DTMF rx // set RX volume to minimum to reduce false positives on DTMF rx
radio.setVolume1(6); radio.setVolume1(6);

View File

@@ -20,6 +20,8 @@
// create object for radio // create object for radio
HamShield radio; HamShield radio;
// To use non-standard pins, use the following initialization
//HamShield radio(ncs_pin, clk_pin, dat_pin);
#define LED_PIN 13 #define LED_PIN 13
#define RSSI_REPORT_RATE_MS 5000 #define RSSI_REPORT_RATE_MS 5000
@@ -50,9 +52,10 @@ void setup() {
// initialize serial communication // initialize serial communication
Serial.begin(9600); Serial.begin(9600);
Serial.println("press the switch to begin..."); Serial.println("press the switch or send any character to begin...");
while (digitalRead(SWITCH_PIN)); while (digitalRead(SWITCH_PIN) && !Serial.available());
Serial.read(); // flush
// let the AU ot of reset // let the AU ot of reset
digitalWrite(RESET_PIN, HIGH); digitalWrite(RESET_PIN, HIGH);

View File

@@ -8,6 +8,11 @@
* power and then to your computer via USB. Issue commands * power and then to your computer via USB. Issue commands
* via the KISS equipment. * via the KISS equipment.
* *
* You can also just use the serial terminal to send and receive
* APRS packets, but keep in mind that several fields in the packet
* are bit-shifted from standard ASCII (so if you're receiving,
* you won't get human readable callsigns or paths).
*
* To use the KISS example with YAAC: * To use the KISS example with YAAC:
* 1. open the configure YAAC wizard * 1. open the configure YAAC wizard
* 2. follow the prompts and enter in your details until you get to the "Add and Configure Interfaces" window * 2. follow the prompts and enter in your details until you get to the "Add and Configure Interfaces" window
@@ -55,9 +60,9 @@ void setup() {
radio.setVolume2(0xFF); radio.setVolume2(0xFF);
radio.setSQHiThresh(-100); radio.setSQHiThresh(-100);
radio.setSQLoThresh(-100); radio.setSQLoThresh(-100);
radio.setSQOn(); //radio.setSQOn();
radio.frequency(144390); radio.frequency(144390);
//radio.bypassPreDeEmph(); radio.bypassPreDeEmph();
dds.start(); dds.start();
afsk.start(&dds); afsk.start(&dds);

View File

@@ -1,5 +1,5 @@
name=HamShield name=HamShield
version=1.1.1 version=1.1.2
author=Morgan Redfield <morgan@enhancedradio.com>, Casey Halverson <casey@enhancedradio.com> author=Morgan Redfield <morgan@enhancedradio.com>, Casey Halverson <casey@enhancedradio.com>
maintainer=Morgan Redfield <morgan@enhancedradio.com> maintainer=Morgan Redfield <morgan@enhancedradio.com>
sentence=A library for use with HamShield by Enhanced Radio Devices. sentence=A library for use with HamShield by Enhanced Radio Devices.

View File

@@ -3,16 +3,21 @@
// 11/22/2013 by Morgan Redfield <redfieldm@gmail.com> // 11/22/2013 by Morgan Redfield <redfieldm@gmail.com>
// 04/26/2015 various changes Casey Halverson <spaceneedle@gmail.com> // 04/26/2015 various changes Casey Halverson <spaceneedle@gmail.com>
#include "Arduino.h"
#include "HamShield.h" #include "HamShield.h"
#include <avr/wdt.h> #include "stdint.h"
#include "math.h"
#if defined(__AVR__)
#include <avr/pgmspace.h> #include <avr/pgmspace.h>
// #include <PCM.h> #define MORSE_TABLE_PROGMEM
#else
// get rid of progmem for now and just put these tables in flash/program space
#define PROGMEM
#endif
/* don't change this regulatory value, use dangerMode() and safeMode() instead */ /* don't change this regulatory value, use dangerMode() and safeMode() instead */
bool restrictions = true; bool restrictions = true;
HamShield *HamShield::sHamShield = NULL;
/* channel lookup tables */ /* channel lookup tables */
@@ -33,7 +38,6 @@ unsigned int morse_dot_millis = 100;
// It will occupy 108 bytes of memory (or program memory if defined) // It will occupy 108 bytes of memory (or program memory if defined)
#define MORSE_TABLE_LENGTH 54 #define MORSE_TABLE_LENGTH 54
#define MORSE_TABLE_PROGMEM
#ifndef MORSE_TABLE_PROGMEM #ifndef MORSE_TABLE_PROGMEM
const struct asciiMorse { const struct asciiMorse {
char ascii; char ascii;
@@ -115,45 +119,20 @@ const unsigned char AFSK_mark[] PROGMEM = { 154, 249, 91, 11, 205, 216, 25, 68,
const unsigned char AFSK_space[] PROGMEM = { 140, 228, 250, 166, 53, 0, 53, 166, 249, 230, 128, 24, 7, 88, 203, 255, 203, 88, 7, 24, 128, 230, 249, 167, 53, 0, 53, 167, 249, 230, 128, 24, 6, 88, 202, 255, 202, 88, 6, 24, 127, 231, 249, 167, 52, 0, 52, 167, 248, 231, 127, 25, 6, 89, 202, 255, 202, 89, 6, 25, 127, 231, 248, 167, 53, 0, 54, 165, 251, 227, 133, 14}; const unsigned char AFSK_space[] PROGMEM = { 140, 228, 250, 166, 53, 0, 53, 166, 249, 230, 128, 24, 7, 88, 203, 255, 203, 88, 7, 24, 128, 230, 249, 167, 53, 0, 53, 167, 249, 230, 128, 24, 6, 88, 202, 255, 202, 88, 6, 24, 127, 231, 249, 167, 52, 0, 52, 167, 248, 231, 127, 25, 6, 89, 202, 255, 202, 89, 6, 25, 127, 231, 248, 167, 53, 0, 54, 165, 251, 227, 133, 14};
/* Aux button variables */
volatile int ptt = false;
volatile long bouncer = 0;
/** Default constructor, uses default I2C address.
* @see A1846S_DEFAULT_ADDRESS
*/
HamShield::HamShield() {
devAddr = A1; // devAddr is the chip select pin used by the HamShield
sHamShield = this;
pinMode(devAddr, OUTPUT);
digitalWrite(devAddr, HIGH);
pinMode(CLK, OUTPUT);
digitalWrite(CLK, HIGH);
pinMode(DAT, OUTPUT);
digitalWrite(DAT, HIGH);
}
/** Specific address constructor. /** Specific address constructor.
* @param chip select pin for HamShield * @param chip select pin for HamShield
* @see A1846S_DEFAULT_ADDRESS * @see A1846S_DEFAULT_ADDRESS
* @see A1846S_ADDRESS_AD0_LOW * @see A1846S_ADDRESS_AD0_LOW
* @see A1846S_ADDRESS_AD0_HIGH * @see A1846S_ADDRESS_AD0_HIGH
*/ */
HamShield::HamShield(uint8_t cs_pin) { HamShield::HamShield(uint8_t cs_pin, uint8_t clk_pin, uint8_t dat_pin, uint8_t pwm_pin) {
devAddr = cs_pin; devAddr = cs_pin;
hs_pwm_pin = pwm_pin;
pinMode(devAddr, OUTPUT); HSsetPins(cs_pin, clk_pin, dat_pin);
digitalWrite(devAddr, HIGH);
pinMode(CLK, OUTPUT);
digitalWrite(CLK, HIGH);
pinMode(DAT, OUTPUT);
digitalWrite(DAT, HIGH);
} }
/** Power on and prepare for general usage. /** Power on and prepare for general usage.
* *
*/ */
@@ -221,13 +200,13 @@ void HamShield::initialize(bool narrowBand) {
// calibration // calibration
tx_data = 0x00A4; tx_data = 0x00A4;
HSwriteWord(devAddr, 0x30, tx_data); HSwriteWord(devAddr, 0x30, tx_data);
delay(100); HSdelay(100);
tx_data = 0x00A6; tx_data = 0x00A6;
HSwriteWord(devAddr, 0x30, tx_data); HSwriteWord(devAddr, 0x30, tx_data);
delay(100); HSdelay(100);
tx_data = 0x0006; tx_data = 0x0006;
HSwriteWord(devAddr, 0x30, tx_data); HSwriteWord(devAddr, 0x30, tx_data);
delay(100); HSdelay(100);
// set band width // set band width
@@ -237,7 +216,7 @@ void HamShield::initialize(bool narrowBand) {
setupWideBand(); setupWideBand();
} }
delay(100); HSdelay(100);
/* /*
// setup default values // setup default values
@@ -425,15 +404,9 @@ bool HamShield::testConnection() {
* to 7FH, and then write value to the address subtracted by * to 7FH, and then write value to the address subtracted by
* 80H. Finally write 0x0000 to 7FH * 80H. Finally write 0x0000 to 7FH
* Example: writing 85H register address is 0x001F . * Example: writing 85H register address is 0x001F .
* Move 7FH 0x0001{ * Move 7FH 0x0001{}
* Move 05H 0x001F{} 05H=85H-80H
} * Move 7FH 0x0000{}
* Move 05H 0x001F{
} 05H=85H-80H
* Move 7FH 0x0000{
}
*/ */
uint16_t HamShield::readCtlReg() { uint16_t HamShield::readCtlReg() {
@@ -444,7 +417,7 @@ uint16_t HamShield::readCtlReg() {
void HamShield::softReset() { void HamShield::softReset() {
uint16_t tx_data = 0x1; uint16_t tx_data = 0x1;
HSwriteWord(devAddr, A1846S_CTL_REG, tx_data); HSwriteWord(devAddr, A1846S_CTL_REG, tx_data);
delay(100); // Note: see A1846S setup info for timing guidelines HSdelay(100); // Note: see A1846S setup info for timing guidelines
tx_data = 0x4; tx_data = 0x4;
HSwriteWord(devAddr, A1846S_CTL_REG, tx_data); HSwriteWord(devAddr, A1846S_CTL_REG, tx_data);
} }
@@ -568,7 +541,7 @@ void HamShield::setTX(bool on_noff){
//setGpioHi(4); // V1 //setGpioHi(4); // V1
delay(50); // delay required by AU1846 HSdelay(50); // delay required by AU1846
} }
HSwriteBitW(devAddr, A1846S_CTL_REG, A1846S_TX_MODE_BIT, on_noff); HSwriteBitW(devAddr, A1846S_CTL_REG, A1846S_TX_MODE_BIT, on_noff);
@@ -590,7 +563,7 @@ void HamShield::setRX(bool on_noff){
setGpioLow(4); // V1 setGpioLow(4); // V1
setGpioLow(5); // V2 setGpioLow(5); // V2
delay(50); // delay required by AU1846 HSdelay(50); // delay required by AU1846
} }
HSwriteBitW(devAddr, A1846S_CTL_REG, A1846S_RX_MODE_BIT, on_noff); HSwriteBitW(devAddr, A1846S_CTL_REG, A1846S_RX_MODE_BIT, on_noff);
@@ -938,20 +911,19 @@ bool HamShield::getVoxOn(){
// Vox Threshold // Vox Threshold
void HamShield::setVoxOpenThresh(uint16_t vox_open_thresh){ void HamShield::setVoxOpenThresh(uint16_t vox_open_thresh){
// When vssi > th_h_vox, then vox will be 1(unit mV ) // When vssi > th_h_vox, then vox will be 1(unit mV )
HSwriteWord(devAddr, A1846S_TH_H_VOX_REG, vox_open_thresh); HSwriteBitsW(devAddr, A1846S_TH_H_VOX_REG, A1846S_TH_H_VOX_BIT, A1846S_TH_H_VOX_LEN, vox_open_thresh);
} }
uint16_t HamShield::getVoxOpenThresh(){ uint16_t HamShield::getVoxOpenThresh(){
HSreadWord(devAddr, A1846S_TH_H_VOX_REG, radio_i2c_buf); HSreadBitsW(devAddr, A1846S_TH_H_VOX_REG, A1846S_TH_H_VOX_BIT, A1846S_TH_H_VOX_LEN, radio_i2c_buf);
return radio_i2c_buf[0]; return radio_i2c_buf[0];
} }
void HamShield::setVoxShutThresh(uint16_t vox_shut_thresh){ void HamShield::setVoxShutThresh(uint16_t vox_shut_thresh){
// When vssi < th_l_vox && time delay meet, then vox will be 0 (unit mV ) // When vssi < th_l_vox && time delay meet, then vox will be 0 (unit mV )
HSwriteWord(devAddr, A1846S_TH_L_VOX_REG, vox_shut_thresh); HSwriteBitsW(devAddr, A1846S_TH_L_VOX_REG, A1846S_TH_L_VOX_BIT, A1846S_TH_L_VOX_LEN, vox_shut_thresh);
} }
uint16_t HamShield::getVoxShutThresh(){ uint16_t HamShield::getVoxShutThresh(){
HSreadWord(devAddr, A1846S_TH_L_VOX_REG, radio_i2c_buf); HSreadBitsW(devAddr, A1846S_TH_L_VOX_REG, A1846S_TH_L_VOX_BIT, A1846S_TH_L_VOX_LEN, radio_i2c_buf);
return radio_i2c_buf[0]; return radio_i2c_buf[0];
} }
@@ -1095,10 +1067,10 @@ void HamShield::lookForTone(uint16_t t_hz) {
float tone_hz = (float) t_hz; float tone_hz = (float) t_hz;
float Fs = 6400000/1024; float Fs = 6400000/1024;
float k = floor(tone_hz/Fs*127 + 0.5); float k = floor(tone_hz/Fs*127 + 0.5);
uint16_t t = (uint16_t) (round(2.0*cos(2.0*PI*k/127)*1024)); uint16_t t = (uint16_t) (round(2.0*cos(2.0*M_PI*k/127)*1024));
float k2 = floor(2*tone_hz/Fs*127+0.5); float k2 = floor(2*tone_hz/Fs*127+0.5);
uint16_t h = (uint16_t) (round(2.0*cos(2.0*PI*k2/127)*1024)); uint16_t h = (uint16_t) (round(2.0*cos(2.0*M_PI*k2/127)*1024));
// set tone // set tone
HSwriteWord(devAddr, 0x68, t); HSwriteWord(devAddr, 0x68, t);
@@ -1295,9 +1267,14 @@ int16_t HamShield::readRSSI(){
return rssi; return rssi;
} }
uint16_t HamShield::readVSSI(){ uint16_t HamShield::readVSSI(){
HSreadWord(devAddr, A1846S_VSSI_REG, radio_i2c_buf); HSreadBitsW(devAddr, A1846S_VSSI_REG, A1846S_VSSI_BIT, A1846S_VSSI_LENGTH, radio_i2c_buf);
return radio_i2c_buf[0] & 0x7FF; // only need lowest 10 bits return radio_i2c_buf[0];
}
uint16_t HamShield::readMSSI(){
HSreadBitsW(devAddr, A1846S_VSSI_REG, A1846S_MSSI_BIT, A1846S_MSSI_LENGTH, radio_i2c_buf);
return radio_i2c_buf[0];
} }
@@ -1395,7 +1372,11 @@ bool HamShield::frequency_float(float freq_khz) {
bool HamShield::setFRSChannel(uint8_t channel) { bool HamShield::setFRSChannel(uint8_t channel) {
if(channel < 15) { if(channel < 15) {
#if defined(__AVR__)
setFrequency(pgm_read_dword_near(FRS + channel)); setFrequency(pgm_read_dword_near(FRS + channel));
#else
setFrequency(FRS[channel]);
#endif
return true; return true;
} }
return false; return false;
@@ -1406,11 +1387,19 @@ bool HamShield::setFRSChannel(uint8_t channel) {
bool HamShield::setGMRSChannel(uint8_t channel) { bool HamShield::setGMRSChannel(uint8_t channel) {
if((channel > 8) & (channel < 16)) { if((channel > 8) & (channel < 16)) {
channel = channel - 7; // we start with 0, to try to avoid channel 8 being nothing channel = channel - 7; // we start with 0, to try to avoid channel 8 being nothing
setFrequency(pgm_read_dword_near(FRS + channel)); #if defined(__AVR__)
setFrequency(pgm_read_dword_near(FRS + channel));
#else
setFrequency(FRS[channel]);
#endif
return true; return true;
} }
if(channel < 9) { if(channel < 9) {
setFrequency(pgm_read_dword_near(GMRS + channel)); #if defined(__AVR__)
setFrequency(pgm_read_dword_near(GMRS + channel));
#else
setFrequency(GMRS[channel]);
#endif
return true; return true;
} }
return false; return false;
@@ -1420,7 +1409,11 @@ bool HamShield::setGMRSChannel(uint8_t channel) {
bool HamShield::setMURSChannel(uint8_t channel) { bool HamShield::setMURSChannel(uint8_t channel) {
if(channel < 6) { if(channel < 6) {
setFrequency(pgm_read_dword_near(MURS + channel)); #if defined(__AVR__)
setFrequency(pgm_read_dword_near(MURS + channel));
#else
setFrequency(MURS[channel]);
#endif
return true; return true;
} }
} }
@@ -1429,7 +1422,11 @@ bool HamShield::setMURSChannel(uint8_t channel) {
bool HamShield::setWXChannel(uint8_t channel) { bool HamShield::setWXChannel(uint8_t channel) {
if(channel < 8) { if(channel < 8) {
setFrequency(pgm_read_dword_near(WX + channel)); #if defined(__AVR__)
setFrequency(pgm_read_dword_near(WX + channel));
#else
setFrequency(WX[channel]);
#endif
setModeReceive(); setModeReceive();
// turn off squelch? // turn off squelch?
// channel bandwidth? // channel bandwidth?
@@ -1445,7 +1442,7 @@ uint8_t HamShield::scanWXChannel() {
int16_t toprssi = 0; int16_t toprssi = 0;
for(int x = 0; x < 8; x++) { for(int x = 0; x < 8; x++) {
setWXChannel(x); setWXChannel(x);
delay(100); HSdelay(100);
int16_t rssi = readRSSI(); int16_t rssi = readRSSI();
if(rssi > toprssi) { toprssi = rssi; channel = x; } if(rssi > toprssi) { toprssi = rssi; channel = x; }
} }
@@ -1537,39 +1534,6 @@ uint32_t HamShield::findWhitespaceChannels(uint32_t buffer[],uint8_t buffsize, u
} }
/* Setup the auxiliary button input mode and register the ISR */
void HamShield::buttonMode(uint8_t mode) {
pinMode(HAMSHIELD_AUX_BUTTON,INPUT); // set the pin mode to input
digitalWrite(HAMSHIELD_AUX_BUTTON,HIGH); // turn on internal pull up
if(mode == PTT_MODE) { attachInterrupt(HAMSHIELD_AUX_BUTTON, HamShield::isr_ptt, CHANGE); }
if(mode == RESET_MODE) { attachInterrupt(HAMSHIELD_AUX_BUTTON, HamShield::isr_reset, CHANGE); }
}
/* Interrupt routines */
/* handle aux button to reset condition */
void HamShield::isr_reset() {
wdt_enable(WDTO_15MS);
while(1) { }
}
/* Transmit on press, receive on release. We need debouncing !! */
void HamShield::isr_ptt() {
if((bouncer + 200) > millis()) {
if(ptt == false) {
ptt = true;
sHamShield->setModeTransmit();
bouncer = millis();
}
if(ptt == true) {
ptt = false;
sHamShield->setModeReceive();
bouncer = millis();
} }
}
/* /*
Radio etiquette function: Wait for empty channel. Radio etiquette function: Wait for empty channel.
@@ -1584,13 +1548,13 @@ Does not take in account the millis() overflow
bool HamShield::waitForChannel(long timeout = 0, long breakwindow = 0, int setRSSI = HAMSHIELD_EMPTY_CHANNEL_RSSI) { bool HamShield::waitForChannel(long timeout = 0, long breakwindow = 0, int setRSSI = HAMSHIELD_EMPTY_CHANNEL_RSSI) {
int16_t rssi = 0; // Set RSSI to max received signal int16_t rssi = 0; // Set RSSI to max received signal
for(int x = 0; x < 20; x++) { rssi = readRSSI(); } // "warm up" to get past RSSI hysteresis for(int x = 0; x < 20; x++) { rssi = readRSSI(); } // "warm up" to get past RSSI hysteresis
long timer = millis() + timeout; // Setup the timeout value long timer = HSmillis() + timeout; // Setup the timeout value
if(timeout == 0) { timer = 4294967295; } // If we want to wait forever, set it to the max millis() if(timeout == 0) { timer = 4294967295; } // If we want to wait forever, set it to the max millis()
while(timer > millis()) { // while our timer is not timed out. while(timer > HSmillis()) { // while our timer is not timed out.
rssi = readRSSI(); // Read signal strength rssi = readRSSI(); // Read signal strength
if(rssi < setRSSI) { // If the channel is empty, lets see if anyone breaks in. if(rssi < setRSSI) { // If the channel is empty, lets see if anyone breaks in.
timer = millis() + breakwindow; timer = HSmillis() + breakwindow;
while(timer > millis()) { while(timer > HSmillis()) {
rssi = readRSSI(); rssi = readRSSI();
if(rssi > setRSSI) { return false; } // Someone broke into the channel, abort. if(rssi > setRSSI) { return false; } // Someone broke into the channel, abort.
} return true; // It passed the test...channel is open. } return true; // It passed the test...channel is open.
@@ -1634,13 +1598,13 @@ void HamShield::morseOut(char buffer[HAMSHIELD_MORSE_BUFFER_SIZE]) {
// We delay by 4 here, if we previously sent a symbol. Otherwise 7. // We delay by 4 here, if we previously sent a symbol. Otherwise 7.
// This could probably just be always 7 and go relatively unnoticed. // This could probably just be always 7 and go relatively unnoticed.
if(prev == 0 || prev == ' '){ if(prev == 0 || prev == ' '){
//tone(HAMSHIELD_PWM_PIN, 6000, morse_dot_millis * 7); //tone(hs_pwm_pin, 6000, morse_dot_millis * 7);
noTone(HAMSHIELD_PWM_PIN); HSnoTone(hs_pwm_pin);
delay(morse_dot_millis*7); HSdelay(morse_dot_millis*7);
} else { } else {
//tone(HAMSHIELD_PWM_PIN, 6000, morse_dot_millis * 4); //tone(hs_pwm_pin, 6000, morse_dot_millis * 4);
noTone(HAMSHIELD_PWM_PIN); HSnoTone(hs_pwm_pin);
delay(morse_dot_millis*4); HSdelay(morse_dot_millis*4);
} }
continue; continue;
} }
@@ -1649,22 +1613,24 @@ void HamShield::morseOut(char buffer[HAMSHIELD_MORSE_BUFFER_SIZE]) {
if(bits) { // If it is a valid character... if(bits) { // If it is a valid character...
do { do {
if(bits & 1) { if(bits & 1) {
tone(HAMSHIELD_PWM_PIN, morse_freq, morse_dot_millis * 3); HStone(hs_pwm_pin, morse_freq); //, morse_dot_millis * 3);
delay(morse_dot_millis*3); HSdelay(morse_dot_millis*3);
HSnoTone(hs_pwm_pin);
} else { } else {
tone(HAMSHIELD_PWM_PIN, morse_freq, morse_dot_millis); HStone(hs_pwm_pin, morse_freq); //, morse_dot_millis);
delay(morse_dot_millis); HSdelay(morse_dot_millis);
HSnoTone(hs_pwm_pin);
} }
//tone(HAMSHIELD_PWM_PIN, 6000, morse_dot_millis); //tone(hs_pwm_pin, 6000, morse_dot_millis);
noTone(HAMSHIELD_PWM_PIN); HSnoTone(hs_pwm_pin);
delay(morse_dot_millis); HSdelay(morse_dot_millis);
bits >>= 1; // Shift into the next symbol bits >>= 1; // Shift into the next symbol
} while(bits != 1); // Wait for 1 termination to be all we have left } while(bits != 1); // Wait for 1 termination to be all we have left
} }
// End of character // End of character
//tone(HAMSHIELD_PWM_PIN, 6000, morse_dot_millis * 3); //tone(hs_pwm_pin, 6000, morse_dot_millis * 3);
noTone(HAMSHIELD_PWM_PIN); HSnoTone(hs_pwm_pin);
delay(morse_dot_millis * 3); HSdelay(morse_dot_millis * 3);
} }
return; return;
} }
@@ -1731,7 +1697,7 @@ void HamShield::SSTVVISCode(int code) {
toneWait(1900,300); toneWait(1900,300);
toneWait(1200,30); toneWait(1200,30);
for(int x = 0; x < 7; x++) { for(int x = 0; x < 7; x++) {
if(bitRead(code,x)) { toneWait(1100,30); } else { toneWait(1300,30); } if(code&(1<<x)) { toneWait(1100,30); } else { toneWait(1300,30); }
} }
if(parityCalc(code)) { toneWait(1300,30); } else { toneWait(1100,30); } if(parityCalc(code)) { toneWait(1300,30); } else { toneWait(1100,30); }
toneWait(1200,30); toneWait(1200,30);
@@ -1794,19 +1760,20 @@ void HamShield::SSTVTestPattern(int code) {
/* wait for tone to complete */ /* wait for tone to complete */
void HamShield::toneWait(uint16_t freq, long timer) { void HamShield::toneWait(uint16_t freq, long timer) {
tone(HAMSHIELD_PWM_PIN,freq,timer); HStone(hs_pwm_pin,freq); //,timer);
delay(timer); HSdelay(timer);
HSnoTone(hs_pwm_pin);
} }
/* wait microseconds for tone to complete */ /* wait microseconds for tone to complete */
void HamShield::toneWaitU(uint16_t freq, long timer) { void HamShield::toneWaitU(uint16_t freq, long timer) {
if(freq < 16383) { if(freq < 16383) {
tone(HAMSHIELD_PWM_PIN,freq); HStone(hs_pwm_pin,freq);
delayMicroseconds(timer); noTone(HAMSHIELD_PWM_PIN); return; HSdelayMicroseconds(timer); HSnoTone(hs_pwm_pin); return;
} }
tone(HAMSHIELD_PWM_PIN,freq); HStone(hs_pwm_pin,freq);
delay(timer / 1000); noTone(HAMSHIELD_PWM_PIN); return; HSdelay(timer / 1000); HSnoTone(hs_pwm_pin); return;
} }
@@ -1822,21 +1789,3 @@ bool HamShield::parityCalc(int code) {
return parity; return parity;
} }
/*
void HamShield::AFSKOut(char buffer[80]) {
for(int x = 0; x < 65536; x++) {
startPlayback(AFSK_mark, sizeof(AFSK_mark)); delay(8);
startPlayback(AFSK_space, sizeof(AFSK_space)); delay(8); }
}
*/
// This is the ADC timer handler. When enabled, we'll see what we're supposed
// to be reading/handling, and trigger those on the main object.
/*ISR(ADC_vect) {
TIFR1 = _BV(ICF1); // Clear the timer flag
if(HamShield::sHamShield->afsk.enabled()) {
HamShield::sHamShield->afsk.timer();
}
}*/

View File

@@ -9,22 +9,12 @@
#define _HAMSHIELD_H_ #define _HAMSHIELD_H_
#include "HamShield_comms.h" #include "HamShield_comms.h"
//#include "SimpleFIFO.h"
//#include "AFSK.h"
//#include "DDS.h"
#include <avr/pgmspace.h>
// HamShield constants // HamShield constants
#define HAMSHIELD_MORSE_BUFFER_SIZE 80 // Char buffer size for morse code text #define HAMSHIELD_MORSE_BUFFER_SIZE 80 // Char buffer size for morse code text
#define HAMSHIELD_AUX_BUTTON 2 // Pin assignment for AUX button
#define HAMSHIELD_PWM_PIN 3 // Pin assignment for PWM output
#define HAMSHIELD_EMPTY_CHANNEL_RSSI -110 // Default threshold where channel is considered "clear" #define HAMSHIELD_EMPTY_CHANNEL_RSSI -110 // Default threshold where channel is considered "clear"
// button modes
#define PTT_MODE 1
#define RESET_MODE 2
// Device Registers // Device Registers
#define A1846S_CTL_REG 0x30 // control register #define A1846S_CTL_REG 0x30 // control register
#define A1846S_CLK_MODE_REG 0x04 // clk_mode #define A1846S_CLK_MODE_REG 0x04 // clk_mode
@@ -38,8 +28,8 @@
//#define A1846S_ADCLK_FREQ_REG 0x2C // adclk_freq<15:0> //#define A1846S_ADCLK_FREQ_REG 0x2C // adclk_freq<15:0>
#define A1846S_INT_MODE_REG 0x2D // interrupt enables #define A1846S_INT_MODE_REG 0x2D // interrupt enables
#define A1846S_TX_VOICE_REG 0x3A // tx voice control reg #define A1846S_TX_VOICE_REG 0x3A // tx voice control reg
#define A1846S_TH_H_VOX_REG 0x41 // register holds vox high (open) threshold bits #define A1846S_TH_H_VOX_REG 0x64 // register holds vox high (open) threshold bits
#define A1846S_TH_L_VOX_REG 0x42 // register holds vox low (shut) threshold bits #define A1846S_TH_L_VOX_REG 0x64 // register holds vox low (shut) threshold bits
#define A1846S_FM_DEV_REG 0x43 // register holds fm deviation settings #define A1846S_FM_DEV_REG 0x43 // register holds fm deviation settings
#define A1846S_RX_VOLUME_REG 0x44 // register holds RX volume settings #define A1846S_RX_VOLUME_REG 0x44 // register holds RX volume settings
#define A1846S_SQ_OPEN_THRESH_REG 0x48 // see sq #define A1846S_SQ_OPEN_THRESH_REG 0x48 // see sq
@@ -115,7 +105,7 @@
#define A1846S_TXON_RF_INT_BIT 7 // txon_rf_uint16_t enable #define A1846S_TXON_RF_INT_BIT 7 // txon_rf_uint16_t enable
#define A1846S_CTCSS_PHASE_INT_BIT 5 // ctcss phase shift detect uint16_t enable #define A1846S_CTCSS_PHASE_INT_BIT 5 // ctcss phase shift detect uint16_t enable
#define A1846S_IDLE_TIMEOUT_INT_BIT 4 // idle state time out uint16_t enable #define A1846S_IDLE_TIMEOUT_INT_BIT 4 // idle state time out uint16_t enable
#define A1846S_RXON_RF_TIMeOUT_INT_BIT 3 // rxon_rf timerout uint16_t enable #define A1846S_RXON_RF_TIMEOUT_INT_BIT 3 // rxon_rf timerout uint16_t enable
#define A1846S_SQ_INT_BIT 2 // sq uint16_t enable #define A1846S_SQ_INT_BIT 2 // sq uint16_t enable
#define A1846S_TXON_RF_TIMEOUT_INT_BIT 1 // txon_rf time out uint16_t enable #define A1846S_TXON_RF_TIMEOUT_INT_BIT 1 // txon_rf time out uint16_t enable
#define A1846S_VOX_INT_BIT 0 // vox uint16_t enable #define A1846S_VOX_INT_BIT 0 // vox uint16_t enable
@@ -126,8 +116,12 @@
#define A1846S_CTCSS_DET_BIT 5 #define A1846S_CTCSS_DET_BIT 5
// Bitfields for A1846S_TH_H_VOX_REG // Bitfields for A1846S_TH_H_VOX_REG
#define A1846S_TH_H_VOX_BIT 14 // th_h_vox<14:0> #define A1846S_TH_H_VOX_BIT 13 // th_h_vox<13:7>
#define A1846S_TH_H_VOX_LENGTH 15 #define A1846S_TH_H_VOX_LEN 7
// Bitfields for A1846S_TH_L_VOX_REG
#define A1846S_TH_L_VOX_BIT 6 // th_l_vox<6:0>
#define A1846S_TH_L_VOX_LEN 7
// Bitfields for A1846S_FM_DEV_REG // Bitfields for A1846S_FM_DEV_REG
#define A1846S_FM_DEV_VOICE_BIT 12 // CTCSS/CDCSS and voice deviation <6:0> #define A1846S_FM_DEV_VOICE_BIT 12 // CTCSS/CDCSS and voice deviation <6:0>
@@ -182,8 +176,10 @@
#define A1846S_RSSI_LENGTH 8 #define A1846S_RSSI_LENGTH 8
// Bitfields for A1846S_VSSI_REG // Bitfields for A1846S_VSSI_REG
#define A1846S_VSSI_BIT 14 // voice signal strength indicator <14:0> (unit mV) #define A1846S_VSSI_BIT 15 // voice signal strength indicator <7:0> (unit 0.5dB)
#define A1846S_VSSI_LENGTH 15 #define A1846S_VSSI_LENGTH 8
#define A1846S_MSSI_BIT 7 // mic signal strength <7:0> (unit 0.5 dB)
#define A1846S_MSSI_LENGTH 8
// Bitfields for A1846S_DTMF_ENABLE_REG // Bitfields for A1846S_DTMF_ENABLE_REG
#define A1846S_DTMF_ENABLE_BIT 15 #define A1846S_DTMF_ENABLE_BIT 15
@@ -224,11 +220,7 @@
class HamShield { class HamShield {
public: public:
// public singleton for ISRs to reference HamShield(uint8_t cs_pin = nSEN, uint8_t clk_pin = CLK, uint8_t dat_pin = DAT, uint8_t pwm_pin = HAMSHIELD_PWM_PIN);
static HamShield *sHamShield; // HamShield singleton, used for ISRs mostly
HamShield();
HamShield(uint8_t cs_pin);
void initialize(); // defaults to 12.5kHz void initialize(); // defaults to 12.5kHz
void initialize(bool narrowBand); // select 12.5kHz if true or 25kHz if false void initialize(bool narrowBand); // select 12.5kHz if true or 25kHz if false
@@ -249,12 +241,14 @@ class HamShield {
uint32_t getFrequency(); uint32_t getFrequency();
float getFrequency_float(); float getFrequency_float();
/* ToDo
// channel mode // channel mode
// 11 - 25kHz channel // 11 - 25kHz channel
// 00 - 12.5kHz channel // 00 - 12.5kHz channel
// 10,01 - reserved // 10,01 - reserved
void setChanMode(uint16_t mode); void setChanMode(uint16_t mode);
uint16_t getChanMode(); uint16_t getChanMode();
*/
void setModeTransmit(); // turn off rx, turn on tx void setModeTransmit(); // turn off rx, turn on tx
void setModeReceive(); // turn on rx, turn off tx void setModeReceive(); // turn on rx, turn off tx
@@ -273,6 +267,7 @@ class HamShield {
void setTxSourceNone(); void setTxSourceNone();
uint16_t getTxSource(); uint16_t getTxSource();
/*
// PA bias voltage is unused (maybe remove this) // PA bias voltage is unused (maybe remove this)
// set PA_bias voltage // set PA_bias voltage
// 000000: 1.01V // 000000: 1.01V
@@ -285,6 +280,7 @@ class HamShield {
// 1111111:3.13V // 1111111:3.13V
void setPABiasVoltage(uint16_t voltage); void setPABiasVoltage(uint16_t voltage);
uint16_t getPABiasVoltage(); uint16_t getPABiasVoltage();
*/
// Subaudio settings // Subaudio settings
@@ -466,6 +462,7 @@ class HamShield {
// Read Only Status Registers // Read Only Status Registers
int16_t readRSSI(); int16_t readRSSI();
uint16_t readVSSI(); uint16_t readVSSI();
uint16_t readMSSI();
// set output power of radio // set output power of radio
void setRfPower(uint8_t pwr); void setRfPower(uint8_t pwr);
@@ -482,9 +479,7 @@ class HamShield {
uint32_t findWhitespace(uint32_t start,uint32_t stop, uint8_t dwell, uint16_t step, uint16_t threshold); uint32_t findWhitespace(uint32_t start,uint32_t stop, uint8_t dwell, uint16_t step, uint16_t threshold);
uint32_t scanChannels(uint32_t buffer[],uint8_t buffsize, uint8_t speed, uint16_t threshold); uint32_t scanChannels(uint32_t buffer[],uint8_t buffsize, uint8_t speed, uint16_t threshold);
uint32_t findWhitespaceChannels(uint32_t buffer[],uint8_t buffsize, uint8_t dwell, uint16_t threshold); uint32_t findWhitespaceChannels(uint32_t buffer[],uint8_t buffsize, uint8_t dwell, uint16_t threshold);
void buttonMode(uint8_t mode);
static void isr_ptt();
static void isr_reset();
unsigned int getMorseFreq(); unsigned int getMorseFreq();
void setMorseFreq(unsigned int morse_freq_hz); void setMorseFreq(unsigned int morse_freq_hz);
unsigned int getMorseDotMillis(); unsigned int getMorseDotMillis();
@@ -503,6 +498,7 @@ class HamShield {
private: private:
uint8_t devAddr; uint8_t devAddr;
uint8_t hs_pwm_pin;
uint16_t radio_i2c_buf[4]; uint16_t radio_i2c_buf[4];
bool tx_active; bool tx_active;
bool rx_active; bool rx_active;

View File

@@ -4,6 +4,28 @@
#include "HamShield_comms.h" #include "HamShield_comms.h"
uint8_t ncs_pin = nSEN;
uint8_t clk_pin = CLK;
uint8_t dat_pin = DAT;
void HSsetPins(uint8_t ncs, uint8_t clk, uint8_t dat) {
ncs_pin = ncs;
clk_pin = clk;
dat_pin = dat;
#if !defined(ARDUINO)
wiringPiSetup();
#endif
pinMode(ncs_pin, OUTPUT);
digitalWrite(ncs_pin, HIGH);
pinMode(clk_pin, OUTPUT);
digitalWrite(clk_pin, HIGH);
pinMode(dat_pin, OUTPUT);
digitalWrite(dat_pin, HIGH);
}
int8_t HSreadBitW(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint16_t *data) int8_t HSreadBitW(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint16_t *data)
{ {
uint16_t b; uint16_t b;
@@ -33,22 +55,22 @@ int8_t HSreadWord(uint8_t devAddr, uint8_t regAddr, uint16_t *data)
uint16_t temp_dat; uint16_t temp_dat;
// bitbang for great justice! // bitbang for great justice!
*data = 0; *data = 0;
pinMode(DAT, OUTPUT); pinMode(dat_pin, OUTPUT);
regAddr = regAddr | (1 << 7); regAddr = regAddr | (1 << 7);
digitalWrite(devAddr, 0); //PORTC &= ~(1<<1); //devAddr used as chip select digitalWrite(devAddr, 0); //PORTC &= ~(1<<1); //devAddr used as chip select
for (int i = 0; i < 8; i++) { for (int i = 0; i < 8; i++) {
temp = ((regAddr & (0x80 >> i)) != 0); temp = ((regAddr & (0x80 >> i)) != 0);
digitalWrite(CLK, 0); //PORTC &= ~(1<<5); // digitalWrite(clk_pin, 0); //PORTC &= ~(1<<5); //
digitalWrite(DAT, temp); digitalWrite(dat_pin, temp);
digitalWrite(CLK, 1); //PORTC |= (1<<5); // digitalWrite(clk_pin, 1); //PORTC |= (1<<5); //
} }
// change direction of DAT // change direction of dat_pin
pinMode(DAT, INPUT); // DDRC &= ~(1<<4); // pinMode(dat_pin, INPUT); // DDRC &= ~(1<<4); //
for (int i = 15; i >= 0; i--) { for (int i = 15; i >= 0; i--) {
digitalWrite(CLK, 0); //PORTC &= ~(1<<5); // digitalWrite(clk_pin, 0); //PORTC &= ~(1<<5); //
digitalWrite(CLK, 1); //PORTC |= (1<<5); // digitalWrite(clk_pin, 1); //PORTC |= (1<<5); //
temp_dat = digitalRead(DAT); //((PINC & (1<<4)) != 0); temp_dat = digitalRead(dat_pin); //((PINC & (1<<4)) != 0);
temp_dat = temp_dat << i; temp_dat = temp_dat << i;
*data |= temp_dat; *data |= temp_dat;
} }
@@ -91,24 +113,51 @@ bool HSwriteWord(uint8_t devAddr, uint8_t regAddr, uint16_t data)
//digitalWrite(13, HIGH); //digitalWrite(13, HIGH);
// bitbang for great justice! // bitbang for great justice!
pinMode(DAT, OUTPUT); pinMode(dat_pin, OUTPUT);
regAddr = regAddr & ~(1 << 7); regAddr = regAddr & ~(1 << 7);
digitalWrite(devAddr, 0); // PORTC &= ~(1<<1); //CS digitalWrite(devAddr, 0); // PORTC &= ~(1<<1); //CS
for (int i = 0; i < 8; i++) { for (int i = 0; i < 8; i++) {
temp_reg = ((regAddr & (0x80 >> i)) != 0); temp_reg = ((regAddr & (0x80 >> i)) != 0);
digitalWrite(CLK, 0); //PORTC &= ~(1<<5); // digitalWrite(clk_pin, 0); //PORTC &= ~(1<<5); //
digitalWrite(DAT, regAddr & (0x80 >> i)); digitalWrite(dat_pin, regAddr & (0x80 >> i));
digitalWrite(CLK, 1); // PORTC |= (1<<5); // digitalWrite(clk_pin, 1); // PORTC |= (1<<5); //
} }
for (int i = 0; i < 16; i++) { for (int i = 0; i < 16; i++) {
temp_dat = ((data & (0x8000 >> i)) != 0); temp_dat = ((data & (0x8000 >> i)) != 0);
digitalWrite(CLK, 0); //PORTC &= ~(1<<5); // digitalWrite(clk_pin, 0); //PORTC &= ~(1<<5); //
digitalWrite(DAT, temp_dat); digitalWrite(dat_pin, temp_dat);
digitalWrite(CLK, 1); // PORTC |= (1<<5); // digitalWrite(clk_pin, 1); // PORTC |= (1<<5); //
} }
digitalWrite(devAddr, 1); //PORTC |= (1<<1); //CS digitalWrite(devAddr, 1); //PORTC |= (1<<1); //CS
return true; return true;
} }
// Hardware abstraction
unsigned long HSmillis(){
return millis();
}
void HSdelay(unsigned long ms) {
delay(ms);
}
void HSdelayMicroseconds(unsigned int us) {
delayMicroseconds(us);
}
void HStone(uint8_t pin, unsigned int frequency) {
#if defined(ARDUINO)
tone(pin, frequency);
#else
softToneCreate(pin);
softToneWrite(pin, frequency);
#endif
}
void HSnoTone(uint8_t pin) {
#if defined(ARDUINO)
noTone(pin);
#else
softToneWrite(pin, 0);
#endif
}

View File

@@ -4,12 +4,27 @@
#ifndef _HAMSHIELD_COMMS_H_ #ifndef _HAMSHIELD_COMMS_H_
#define _HAMSHIELD_COMMS_H_ #define _HAMSHIELD_COMMS_H_
#include "Arduino.h"
//#include "I2Cdev.h"
#define nSEN A1 #if defined(ARDUINO)
#define CLK A5 #include "Arduino.h"
#define DAT A4
#define nSEN A1 //15 //
#define CLK A5 //19 //
#define DAT A4 //18 //
#define HAMSHIELD_PWM_PIN 3
#else // assume Raspberry Pi
#include "stdint.h"
#include <wiringPi.h>
#include <softTone.h>
#define nSEN 0 //BCM17, HW pin 11
#define CLK 3 //BCM22, HW pin 15
#define DAT 2 //BCM27, HW pin 13
#define HAMSHIELD_PWM_PIN 1 //BCM18, HW pin 12
#endif
void HSsetPins(uint8_t ncs, uint8_t clk, uint8_t dat);
int8_t HSreadBitW(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint16_t *data); int8_t HSreadBitW(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint16_t *data);
int8_t HSreadBitsW(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint16_t *data); int8_t HSreadBitsW(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint16_t *data);
@@ -19,4 +34,15 @@ bool HSwriteBitW(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint16_t data
bool HSwriteBitsW(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint16_t data); bool HSwriteBitsW(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint16_t data);
bool HSwriteWord(uint8_t devAddr, uint8_t regAddr, uint16_t data); bool HSwriteWord(uint8_t devAddr, uint8_t regAddr, uint16_t data);
// hardware abstraction layer
unsigned long HSmillis();
void HSdelay(unsigned long ms);
void HSdelayMicroseconds(unsigned int us);
void HStone(uint8_t pin, unsigned int frequency);
void HSnoTone(uint8_t pin);
#endif /* _HAMSHIELD_COMMS_H_ */ #endif /* _HAMSHIELD_COMMS_H_ */