HamShield/src/HamShield_comms.cpp

162 lines
4.5 KiB
C++

/*
* Based loosely on I2Cdev by Jeff Rowberg, except for all kludgy bit-banging
*
* Note that while the Radio IC (AU1846) does have an I2C interface, we've found
* it to be a bit buggy. Instead, we are using a secondary interface to communicate
* with it. The secondary interface is a bit of a hybrid between I2C and SPI.
* uses a Chip-Select pin like SPI, but has bi-directional data like I2C. In order
* to deal with this, we bit-bang the interface.
*/
#include "HamShield_comms.h"
uint8_t ncs_pin = nCS;
uint8_t clk_pin = CLK;
uint8_t dat_pin = DAT;
void HSsetPins(uint8_t ncs, uint8_t clk, uint8_t dat) {
ncs_pin = ncs;
clk_pin = clk;
dat_pin = dat;
#if !defined(ARDUINO)
wiringPiSetup();
#endif
pinMode(ncs_pin, OUTPUT);
digitalWrite(ncs_pin, HIGH);
pinMode(clk_pin, OUTPUT);
digitalWrite(clk_pin, HIGH);
pinMode(dat_pin, OUTPUT);
digitalWrite(dat_pin, HIGH);
}
int8_t HSreadBitW(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint16_t *data)
{
uint16_t b;
uint8_t count = HSreadWord(devAddr, regAddr, &b);
*data = b & (1 << bitNum);
return count;
}
int8_t HSreadBitsW(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint16_t *data)
{
uint8_t count;
uint16_t w;
if ((count = HSreadWord(devAddr, regAddr, &w)) != 0) {
uint16_t mask = ((1 << length) - 1) << (bitStart - length + 1);
w &= mask;
w >>= (bitStart - length + 1);
*data = w;
}
return count;
}
int8_t HSreadWord(uint8_t devAddr, uint8_t regAddr, uint16_t *data)
{
//return I2Cdev::readWord(devAddr, regAddr, data);
uint8_t temp;
uint16_t temp_dat;
// bitbang for great justice!
*data = 0;
pinMode(dat_pin, OUTPUT);
regAddr = regAddr | (1 << 7);
digitalWrite(devAddr, 0); //PORTC &= ~(1<<1); //devAddr used as chip select
for (int i = 0; i < 8; i++) {
temp = ((regAddr & (0x80 >> i)) != 0);
digitalWrite(clk_pin, 0); //PORTC &= ~(1<<5); //
digitalWrite(dat_pin, temp);
HSdelayMicroseconds(1);
digitalWrite(clk_pin, 1); //PORTC |= (1<<5); //
HSdelayMicroseconds(1);
}
// change direction of dat_pin
pinMode(dat_pin, INPUT); // DDRC &= ~(1<<4); //
for (int i = 15; i >= 0; i--) {
digitalWrite(clk_pin, 0); //PORTC &= ~(1<<5); //
HSdelayMicroseconds(1);
digitalWrite(clk_pin, 1); //PORTC |= (1<<5); //
temp_dat = digitalRead(dat_pin); //((PINC & (1<<4)) != 0);
temp_dat = temp_dat << i;
*data |= temp_dat;
HSdelayMicroseconds(1);
}
digitalWrite(devAddr, 1); //PORTC |= (1<<1);// CS
return 1;
}
bool HSwriteBitW(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint16_t data)
{
uint16_t w;
HSreadWord(devAddr, regAddr, &w);
w = (data != 0) ? (w | (1 << bitNum)) : (w & ~(1 << bitNum));
return HSwriteWord(devAddr, regAddr, w);
}
bool HSwriteBitsW(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint16_t data)
{
uint16_t w;
if (HSreadWord(devAddr, regAddr, &w) != 0) {
uint16_t mask = ((1 << length) - 1) << (bitStart - length + 1);
data <<= (bitStart - length + 1); // shift data into correct position
data &= mask; // zero all non-important bits in data
w &= ~(mask); // zero all important bits in existing word
w |= data; // combine data with existing word
return HSwriteWord(devAddr, regAddr, w);
} else {
return false;
}
}
bool HSwriteWord(uint8_t devAddr, uint8_t regAddr, uint16_t data)
{
//return I2Cdev::writeWord(devAddr, regAddr, data);
uint8_t temp_reg;
uint16_t temp_dat;
//digitalWrite(13, HIGH);
// bitbang for great justice!
pinMode(dat_pin, OUTPUT);
regAddr = regAddr & ~(1 << 7);
digitalWrite(devAddr, 0); // PORTC &= ~(1<<1); //CS
for (int i = 0; i < 8; i++) {
temp_reg = ((regAddr & (0x80 >> i)) != 0);
digitalWrite(clk_pin, 0); //PORTC &= ~(1<<5); //
digitalWrite(dat_pin, regAddr & (0x80 >> i));
HSdelayMicroseconds(1);
digitalWrite(clk_pin, 1); // PORTC |= (1<<5); //
HSdelayMicroseconds(1);
}
for (int i = 0; i < 16; i++) {
temp_dat = ((data & (0x8000 >> i)) != 0);
digitalWrite(clk_pin, 0); //PORTC &= ~(1<<5); //
digitalWrite(dat_pin, temp_dat);
HSdelayMicroseconds(1);
digitalWrite(clk_pin, 1); // PORTC |= (1<<5); //
HSdelayMicroseconds(1);
}
digitalWrite(devAddr, 1); //PORTC |= (1<<1); //CS
return true;
}
// Hardware abstraction
unsigned long HSmillis(){
return millis();
}
void HSdelay(unsigned long ms) {
delay(ms);
}
void HSdelayMicroseconds(unsigned int us) {
delayMicroseconds(us);
}