first commit
This commit is contained in:
commit
10c2a26ed2
|
@ -0,0 +1,10 @@
|
|||
name=HamShield_KISS
|
||||
version=1.0.2
|
||||
author=Morgan Redfield <morgan@enhancedradio.com>, Casey Halverson <casey@enhancedradio.com>
|
||||
maintainer=Morgan Redfield <morgan@enhancedradio.com>
|
||||
sentence=A library for use with HamShield by Enhanced Radio Devices.
|
||||
paragraph=
|
||||
category=Device Control
|
||||
url=http://www.hamshield.com
|
||||
architectures=*
|
||||
includes=packet.h, SimpleFIFO.h, KISS.h
|
|
@ -0,0 +1,88 @@
|
|||
#include <HamShield.h>
|
||||
#include "packet.h"
|
||||
#include "KISS.h"
|
||||
|
||||
//AFSK::Packet kissPacket;
|
||||
bool inFrame = false;
|
||||
uint8_t kissBuffer[PACKET_MAX_LEN];
|
||||
uint16_t kissLen = 0;
|
||||
|
||||
// Inside the KISS loop, we basically wait for data to come in from the
|
||||
// KISS equipment, and look if we have anything to relay along
|
||||
void KISS::loop() {
|
||||
static bool currentlySending = false;
|
||||
if(afsk.decoder.read() || afsk.rxPacketCount()) {
|
||||
// A true return means something was put onto the packet FIFO
|
||||
// If we actually have data packets in the buffer, process them all now
|
||||
while(afsk.rxPacketCount()) {
|
||||
AFSK::Packet *packet = afsk.getRXPacket();
|
||||
if(packet) {
|
||||
writePacket(packet);
|
||||
AFSK::PacketBuffer::freePacket(packet);
|
||||
}
|
||||
}
|
||||
}
|
||||
// Check if we have incoming data to turn into a packet
|
||||
while(io->available()) {
|
||||
uint8_t c = (uint8_t)io->read();
|
||||
if(c == KISS_FEND) {
|
||||
if(inFrame && kissLen > 0) {
|
||||
int i;
|
||||
AFSK::Packet *packet = AFSK::PacketBuffer::makePacket(PACKET_MAX_LEN);
|
||||
packet->start();
|
||||
for(i = 0; i < kissLen; i++) {
|
||||
packet->appendFCS(kissBuffer[i]);
|
||||
}
|
||||
packet->finish();
|
||||
afsk.encoder.putPacket(packet);
|
||||
}
|
||||
kissLen = 0;
|
||||
inFrame = false;
|
||||
}
|
||||
// We're inside the boundaries of a FEND
|
||||
if(inFrame) {
|
||||
// Unescape the incoming data
|
||||
if(c == KISS_FESC) {
|
||||
c = io->read();
|
||||
if(c == KISS_TFESC) {
|
||||
c = KISS_FESC;
|
||||
} else {
|
||||
c = KISS_FEND;
|
||||
}
|
||||
}
|
||||
kissBuffer[kissLen++] = c;
|
||||
}
|
||||
if(kissLen == 0 && c != KISS_FEND) {
|
||||
if((c & 0xf) == 0) // First byte<3:0> should be a 0, otherwise we're having options
|
||||
inFrame = true;
|
||||
}
|
||||
}
|
||||
if(afsk.txReady()) {
|
||||
radio->setModeTransmit();
|
||||
currentlySending = true;
|
||||
if(!afsk.txStart()) { // Unable to start for some reason
|
||||
radio->setModeReceive();
|
||||
currentlySending = false;
|
||||
}
|
||||
}
|
||||
if(currentlySending && afsk.encoder.isDone()) {
|
||||
radio->setModeReceive();
|
||||
currentlySending = false;
|
||||
}
|
||||
}
|
||||
|
||||
void KISS::writePacket(AFSK::Packet *p) {
|
||||
int i;
|
||||
io->write(KISS_FEND);
|
||||
io->write((uint8_t)0); // Host to TNC port identifier
|
||||
for(i = 0; i < p->len-2; i++) {
|
||||
char c = p->getByte(i);
|
||||
if(c == KISS_FEND || c == KISS_FESC) {
|
||||
io->write(KISS_FESC);
|
||||
io->write((c==KISS_FEND?KISS_TFEND:KISS_TFESC));
|
||||
} else {
|
||||
io->write(c);
|
||||
}
|
||||
}
|
||||
io->write(KISS_FEND);
|
||||
}
|
|
@ -0,0 +1,36 @@
|
|||
#ifndef _KISS_H_
|
||||
#define _KISS_H_
|
||||
|
||||
#include <HamShield.h>
|
||||
#include "packet.h"
|
||||
|
||||
#define KISS_FEND 0xC0
|
||||
#define KISS_FESC 0xDB
|
||||
#define KISS_TFEND 0xDC
|
||||
#define KISS_TFESC 0xDD
|
||||
|
||||
class KISS {
|
||||
public:
|
||||
KISS(Stream *_io, HamShield *h, DDS *d) : io(_io), radio(h), dds(d) {}
|
||||
bool read();
|
||||
AFSK afsk;
|
||||
void writePacket(AFSK::Packet *);
|
||||
void loop();
|
||||
inline void isr() {
|
||||
static uint8_t tcnt = 0;
|
||||
TIFR1 = _BV(ICF1); // Clear the timer flag
|
||||
dds->clockTick();
|
||||
if(++tcnt == (DDS_REFCLK_DEFAULT/9600)) {
|
||||
//PORTD |= _BV(2); // Diagnostic pin (D2)
|
||||
afsk.timer();
|
||||
tcnt = 0;
|
||||
}
|
||||
//PORTD &= ~(_BV(2));
|
||||
}
|
||||
private:
|
||||
Stream *io;
|
||||
HamShield *radio;
|
||||
DDS *dds;
|
||||
};
|
||||
|
||||
#endif /* _KISS_H_ */
|
|
@ -0,0 +1,89 @@
|
|||
#ifndef SimpleFIFO_h
|
||||
#define SimpleFIFO_h
|
||||
/*
|
||||
||
|
||||
|| @file SimpleFIFO.h
|
||||
|| @version 1.2
|
||||
|| @author Alexander Brevig
|
||||
|| @contact alexanderbrevig@gmail.com
|
||||
||
|
||||
|| @description
|
||||
|| | A simple FIFO class, mostly for primitive types but can be used with classes if assignment to int is allowed
|
||||
|| | This FIFO is not dynamic, so be sure to choose an appropriate size for it
|
||||
|| #
|
||||
||
|
||||
|| @license
|
||||
|| | Copyright (c) 2010 Alexander Brevig
|
||||
|| | This library is free software; you can redistribute it and/or
|
||||
|| | modify it under the terms of the GNU Lesser General Public
|
||||
|| | License as published by the Free Software Foundation; version
|
||||
|| | 2.1 of the License.
|
||||
|| |
|
||||
|| | This library is distributed in the hope that it will be useful,
|
||||
|| | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
|| | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
|| | Lesser General Public License for more details.
|
||||
|| |
|
||||
|| | You should have received a copy of the GNU Lesser General Public
|
||||
|| | License along with this library; if not, write to the Free Software
|
||||
|| | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
|| #
|
||||
||
|
||||
*/
|
||||
template<typename T, int rawSize>
|
||||
class SimpleFIFO {
|
||||
public:
|
||||
const int size; //speculative feature, in case it's needed
|
||||
|
||||
SimpleFIFO();
|
||||
|
||||
T dequeue(); //get next element
|
||||
bool enqueue( T element ); //add an element
|
||||
T peek() const; //get the next element without releasing it from the FIFO
|
||||
void flush(); //[1.1] reset to default state
|
||||
|
||||
//how many elements are currently in the FIFO?
|
||||
unsigned char count() { return numberOfElements; }
|
||||
|
||||
private:
|
||||
#ifndef SimpleFIFO_NONVOLATILE
|
||||
volatile unsigned char numberOfElements;
|
||||
volatile unsigned char nextIn;
|
||||
volatile unsigned char nextOut;
|
||||
volatile T raw[rawSize];
|
||||
#else
|
||||
unsigned char numberOfElements;
|
||||
unsigned char nextIn;
|
||||
unsigned char nextOut;
|
||||
T raw[rawSize];
|
||||
#endif
|
||||
};
|
||||
|
||||
template<typename T, int rawSize>
|
||||
SimpleFIFO<T,rawSize>::SimpleFIFO() : size(rawSize) {
|
||||
flush();
|
||||
}
|
||||
template<typename T, int rawSize>
|
||||
bool SimpleFIFO<T,rawSize>::enqueue( T element ) {
|
||||
if ( count() >= rawSize ) { return false; }
|
||||
numberOfElements++;
|
||||
nextIn %= size;
|
||||
raw[nextIn] = element;
|
||||
nextIn++; //advance to next index
|
||||
return true;
|
||||
}
|
||||
template<typename T, int rawSize>
|
||||
T SimpleFIFO<T,rawSize>::dequeue() {
|
||||
numberOfElements--;
|
||||
nextOut %= size;
|
||||
return raw[ nextOut++];
|
||||
}
|
||||
template<typename T, int rawSize>
|
||||
T SimpleFIFO<T,rawSize>::peek() const {
|
||||
return raw[ nextOut % size];
|
||||
}
|
||||
template<typename T, int rawSize>
|
||||
void SimpleFIFO<T,rawSize>::flush() {
|
||||
nextIn = nextOut = numberOfElements = 0;
|
||||
}
|
||||
#endif
|
|
@ -0,0 +1,738 @@
|
|||
#include <Arduino.h>
|
||||
#include "SimpleFIFO.h"
|
||||
#include "packet.h"
|
||||
#include <util/atomic.h>
|
||||
|
||||
#define PHASE_BIT 8
|
||||
#define PHASE_INC 1
|
||||
|
||||
#define PHASE_MAX (SAMPLEPERBIT * PHASE_BIT)
|
||||
#define PHASE_THRES (PHASE_MAX / 2)
|
||||
|
||||
#define BIT_DIFFER(bitline1, bitline2) (((bitline1) ^ (bitline2)) & 0x01)
|
||||
#define EDGE_FOUND(bitline) BIT_DIFFER((bitline), (bitline) >> 1)
|
||||
|
||||
#define PPOOL_SIZE 2
|
||||
|
||||
#define AFSK_SPACE 2200
|
||||
#define AFSK_MARK 1200
|
||||
|
||||
// Timers
|
||||
volatile unsigned long lastTx = 0;
|
||||
volatile unsigned long lastTxEnd = 0;
|
||||
volatile unsigned long lastRx = 0;
|
||||
|
||||
#define T_BIT ((unsigned int)(SAMPLERATE/BITRATE))
|
||||
|
||||
#ifdef PACKET_PREALLOCATE
|
||||
SimpleFIFO<AFSK::Packet *,PPOOL_SIZE> preallocPool;
|
||||
AFSK::Packet preallocPackets[PPOOL_SIZE];
|
||||
#endif
|
||||
|
||||
void AFSK::Encoder::process() {
|
||||
// We're on the start of a byte position, so fetch one
|
||||
if(bitPosition == 0) {
|
||||
if(preamble) { // Still in preamble
|
||||
currentByte = HDLC_PREAMBLE;
|
||||
--preamble; // Decrement by one
|
||||
} else {
|
||||
if(!packet) { // We aren't on a packet, grab one
|
||||
// Unless we already sent enough
|
||||
if(maxTx-- == 0) {
|
||||
stop();
|
||||
lastTxEnd = millis();
|
||||
return;
|
||||
}
|
||||
packet = pBuf.getPacket();
|
||||
if(!packet) { // There actually weren't any
|
||||
stop(); // Stop transmitting and return
|
||||
lastTxEnd = millis();
|
||||
return;
|
||||
}
|
||||
lastTx = millis();
|
||||
currentBytePos = 0;
|
||||
nextByte = HDLC_FRAME; // Our next output should be a frame boundary
|
||||
hdlc = true;
|
||||
}
|
||||
|
||||
// We ran out of actual data, provide an HDLC frame (idle)
|
||||
if(currentBytePos == packet->len && nextByte == 0) {
|
||||
// We also get here if nextByte isn't set, to handle empty frames
|
||||
pBuf.freePacket(packet);
|
||||
packet = pBuf.getPacket(); // Get the next, if any
|
||||
//packet = NULL;
|
||||
currentBytePos = 0;
|
||||
nextByte = 0;
|
||||
currentByte = HDLC_FRAME;
|
||||
hdlc = true;
|
||||
} else {
|
||||
if(nextByte) {
|
||||
// We queued up something other than the actual stream to be sent next
|
||||
currentByte = nextByte;
|
||||
nextByte = 0;
|
||||
} else {
|
||||
// Get the next byte to send, but if it's an HDLC frame, escape it
|
||||
// and queue the real byte for the next cycle.
|
||||
currentByte = packet->getByte();
|
||||
if(currentByte == HDLC_FRAME) {
|
||||
nextByte = currentByte;
|
||||
currentByte = HDLC_ESCAPE;
|
||||
} else {
|
||||
currentBytePos++;
|
||||
}
|
||||
hdlc = false; // If we get here, it will be NRZI bit stuffed
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Pickup the last bit
|
||||
currentBit = currentByte & 0x1;
|
||||
|
||||
if(lastZero == 5) {
|
||||
currentBit = 0; // Force a 0 bit output
|
||||
} else {
|
||||
currentByte >>= 1; // Bit shift it right, for the next round
|
||||
++bitPosition; // Note our increase in position
|
||||
}
|
||||
|
||||
// To handle NRZI 5 bit stuffing, count the bits
|
||||
if(!currentBit || hdlc)
|
||||
lastZero = 0;
|
||||
else
|
||||
++lastZero;
|
||||
|
||||
// NRZI and AFSK uses toggling 0s, "no change" on 1
|
||||
// So, if not a 1, toggle to the opposite tone
|
||||
if(!currentBit)
|
||||
currentTone = !currentTone;
|
||||
|
||||
if(currentTone == 0) {
|
||||
PORTD |= _BV(7);
|
||||
dds->setFrequency(AFSK_SPACE);
|
||||
} else {
|
||||
PORTD &= ~_BV(7);
|
||||
dds->setFrequency(AFSK_MARK);
|
||||
}
|
||||
}
|
||||
|
||||
bool AFSK::Encoder::start() {
|
||||
if(!done || sending) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if(randomWait > millis()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// First real byte is a frame
|
||||
currentBit = 0;
|
||||
lastZero = 0;
|
||||
bitPosition = 0;
|
||||
//bitClock = 0;
|
||||
preamble = 0b110000; // 6.7ms each, 23 = 153ms
|
||||
done = false;
|
||||
hdlc = true;
|
||||
packet = 0x0; // No initial packet, find in the ISR
|
||||
currentBytePos = 0;
|
||||
maxTx = 3;
|
||||
sending = true;
|
||||
nextByte = 0;
|
||||
dds->setFrequency(0);
|
||||
dds->on();
|
||||
return true;
|
||||
}
|
||||
|
||||
void AFSK::Encoder::stop() {
|
||||
randomWait = 0;
|
||||
sending = false;
|
||||
done = true;
|
||||
dds->setFrequency(0);
|
||||
dds->off();
|
||||
}
|
||||
|
||||
AFSK::Decoder::Decoder() {
|
||||
// Initialize the sampler delay line (phase shift)
|
||||
//for(unsigned char i = 0; i < SAMPLEPERBIT/2; i++)
|
||||
// delay_fifo.enqueue(0);
|
||||
}
|
||||
|
||||
bool AFSK::HDLCDecode::hdlcParse(bool bit, SimpleFIFO<uint8_t,AFSK_RX_FIFO_LEN> *fifo) {
|
||||
bool ret = true;
|
||||
|
||||
demod_bits <<= 1;
|
||||
demod_bits |= bit ? 1 : 0;
|
||||
|
||||
// Flag
|
||||
if(demod_bits == HDLC_FRAME) {
|
||||
fifo->enqueue(HDLC_FRAME);
|
||||
rxstart = true;
|
||||
currchar = 0;
|
||||
bit_idx = 0;
|
||||
return ret;
|
||||
}
|
||||
|
||||
// Reset
|
||||
if((demod_bits & HDLC_RESET) == HDLC_RESET) {
|
||||
rxstart = false;
|
||||
lastRx = millis();
|
||||
return ret;
|
||||
}
|
||||
if(!rxstart) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
// Stuffed?
|
||||
if((demod_bits & 0x3f) == 0x3e)
|
||||
return ret;
|
||||
|
||||
if(demod_bits & 0x01)
|
||||
currchar |= 0x80;
|
||||
|
||||
if(++bit_idx >= 8) {
|
||||
if(currchar == HDLC_FRAME ||
|
||||
currchar == HDLC_RESET ||
|
||||
currchar == HDLC_ESCAPE) {
|
||||
fifo->enqueue(HDLC_ESCAPE);
|
||||
}
|
||||
fifo->enqueue(currchar & 0xff);
|
||||
currchar = 0;
|
||||
bit_idx = 0;
|
||||
} else {
|
||||
currchar >>= 1;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T, int size>
|
||||
class FastRing {
|
||||
private:
|
||||
T ring[size];
|
||||
uint8_t position;
|
||||
public:
|
||||
FastRing(): position(0) {}
|
||||
inline void write(T value) {
|
||||
ring[(position++) & (size-1)] = value;
|
||||
}
|
||||
inline T read() const {
|
||||
return ring[position & (size-1)];
|
||||
}
|
||||
inline T readn(uint8_t n) const {
|
||||
return ring[(position + (~n+1)) & (size-1)];
|
||||
}
|
||||
};
|
||||
// Create a delay line that's half the length of the bit cycle (-90 degrees)
|
||||
FastRing<uint8_t,(T_BIT/2)> delayLine;
|
||||
|
||||
// Handle the A/D converter interrupt (hopefully quickly :)
|
||||
void AFSK::Decoder::process(int8_t curr_sample) {
|
||||
// Run the same through the phase multiplier and butterworth filter
|
||||
iir_x[0] = iir_x[1];
|
||||
iir_x[1] = ((int8_t)delayLine.read() * curr_sample) >> 2;
|
||||
iir_y[0] = iir_y[1];
|
||||
iir_y[1] = iir_x[0] + iir_x[1] + (iir_y[0] >> 1) + (iir_y[0]>>3) + (iir_y[0]>>5);
|
||||
|
||||
// Place this ADC sample into the delay line
|
||||
delayLine.write(curr_sample);
|
||||
|
||||
// Shift the bit into place based on the output of the discriminator
|
||||
sampled_bits <<= 1;
|
||||
sampled_bits |= (iir_y[1] > 0) ? 1 : 0;
|
||||
|
||||
// If we found a 0/1 transition, adjust phases to track
|
||||
if(EDGE_FOUND(sampled_bits)) {
|
||||
if(curr_phase < PHASE_THRES)
|
||||
curr_phase += PHASE_INC;
|
||||
else
|
||||
curr_phase -= PHASE_INC;
|
||||
}
|
||||
|
||||
// Move ahead in phase
|
||||
curr_phase += PHASE_BIT;
|
||||
|
||||
// If we've gone over the phase maximum, we should now have some data
|
||||
if(curr_phase >= PHASE_MAX) {
|
||||
curr_phase %= PHASE_MAX;
|
||||
found_bits <<= 1;
|
||||
|
||||
// If we have 3 bits or more set, it's a positive bit
|
||||
register uint8_t bits = sampled_bits & 0x07;
|
||||
if(bits == 0x07 || bits == 0x06 || bits == 0x05 || bits == 0x03) {
|
||||
found_bits |= 1;
|
||||
}
|
||||
|
||||
hdlc.hdlcParse(!EDGE_FOUND(found_bits), &rx_fifo); // Process it
|
||||
}
|
||||
}
|
||||
|
||||
// This routine uses a pre-allocated Packet structure
|
||||
// to save on the memory requirements of the stream data
|
||||
bool AFSK::Decoder::read() {
|
||||
bool retVal = false;
|
||||
if(!currentPacket) { // We failed a prior memory allocation
|
||||
currentPacket = pBuf.makePacket(PACKET_MAX_LEN);
|
||||
if(!currentPacket) // Still nothing
|
||||
return false;
|
||||
}
|
||||
// While we have AFSK receive FIFO bytes...
|
||||
while(rx_fifo.count()) {
|
||||
// Grab the character
|
||||
char c = rx_fifo.dequeue();
|
||||
bool escaped = false;
|
||||
if(c == HDLC_ESCAPE) { // We received an escaped byte, mark it
|
||||
escaped = true;
|
||||
// Do we want to keep HDLC_ESCAPEs in the packet?
|
||||
//currentPacket->append(HDLC_ESCAPE); // Append without FCS
|
||||
c = rx_fifo.dequeue(); // Reset to the next character
|
||||
}
|
||||
|
||||
// Append all the bytes
|
||||
// This will include unescaped HDLC_FRAME bytes
|
||||
if(c != HDLC_FRAME || escaped) // Append frame if it is escaped
|
||||
currentPacket->appendFCS(c); // Escaped characters and all else go into FCS
|
||||
|
||||
if(currentPacket->len > PACKET_MAX_LEN) {
|
||||
// We've now gone too far and picked up far too many bytes
|
||||
// Cancel this frame, start back at the beginning
|
||||
currentPacket->clear();
|
||||
continue;
|
||||
}
|
||||
|
||||
// We have a frame boundary, if it isn't escaped
|
||||
// If it's escaped, it was part of the data stream
|
||||
if(c == HDLC_FRAME && !escaped) {
|
||||
if(!currentPacket->len) {
|
||||
currentPacket->clear(); // There wasn't any data, restart stream
|
||||
continue;
|
||||
} else {
|
||||
// We have some bytes in stream, check it meets minimum payload length
|
||||
// Min payload is 1 (flag) + 14 (addressing) + 2 (control/PID) + 1 (flag)
|
||||
if(currentPacket->len >= 16) {
|
||||
// We should end up here with a valid FCS due to the appendFCS
|
||||
if(currentPacket->crcOK()) { // Magic number for the CRC check passing
|
||||
// Valid frame, so, let's filter for control + PID
|
||||
// Maximum search distance is 71 bytes to end of the address fields
|
||||
// Skip the HDLC frame start
|
||||
bool filtered = false;
|
||||
for(unsigned char i = 0; i < (currentPacket->len<70?currentPacket->len:71); ++i) {
|
||||
if((currentPacket->getByte() & 0x1) == 0x1) { // Found a byte with LSB set
|
||||
// which marks the final address payload
|
||||
// next two bytes should be the control/PID
|
||||
//if(currentPacket->getByte() == 0x03 && currentPacket->getByte() == 0xf0) {
|
||||
filtered = true;
|
||||
break; // Found it
|
||||
//}
|
||||
}
|
||||
}
|
||||
|
||||
if(!filtered) {
|
||||
// Frame wasn't one we care about, discard
|
||||
currentPacket->clear();
|
||||
continue;
|
||||
}
|
||||
|
||||
// It's all done and formatted, ready to go
|
||||
currentPacket->ready = 1;
|
||||
if(!pBuf.putPacket(currentPacket)) // Put it in the receive FIFO
|
||||
pBuf.freePacket(currentPacket); // Out of FIFO space, so toss it
|
||||
|
||||
// Allocate a new one of maximum length
|
||||
currentPacket = pBuf.makePacket(PACKET_MAX_LEN);
|
||||
retVal = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Restart the stream
|
||||
currentPacket->clear();
|
||||
}
|
||||
}
|
||||
return retVal; // This is true if we parsed a packet in this flow
|
||||
}
|
||||
|
||||
void AFSK::Decoder::start() {
|
||||
// Do this in start to allocate our first packet
|
||||
currentPacket = pBuf.makePacket(PACKET_MAX_LEN);
|
||||
/* ASSR &= ~(_BV(EXCLK) | _BV(AS2));
|
||||
|
||||
// Do non-inverting PWM on pin OC2B (arduino pin 3) (p.159).
|
||||
// OC2A (arduino pin 11) stays in normal port operation:
|
||||
// COM2B1=1, COM2B0=0, COM2A1=0, COM2A0=0
|
||||
// Mode 1 - Phase correct PWM
|
||||
TCCR2A = (TCCR2A | _BV(COM2B1)) & ~(_BV(COM2B0) | _BV(COM2A1) | _BV(COM2A0)) |
|
||||
_BV(WGM21) | _BV(WGM20);
|
||||
// No prescaler (p.162)
|
||||
TCCR2B = (TCCR2B & ~(_BV(CS22) | _BV(CS21))) | _BV(CS20) | _BV(WGM22);
|
||||
|
||||
OCR2A = pow(2,COMPARE_BITS)-1;
|
||||
OCR2B = 0;
|
||||
// Configure the ADC and Timer1 to trigger automatic interrupts
|
||||
TCCR1A = 0;
|
||||
TCCR1B = _BV(CS11) | _BV(WGM13) | _BV(WGM12);
|
||||
ICR1 = ((F_CPU / 8) / REFCLK) - 1;
|
||||
ADMUX = _BV(REFS0) | _BV(ADLAR) | 0; // Channel 0, shift result left (ADCH used)
|
||||
DDRC &= ~_BV(0);
|
||||
PORTC &= ~_BV(0);
|
||||
DIDR0 |= _BV(0);
|
||||
ADCSRB = _BV(ADTS2) | _BV(ADTS1) | _BV(ADTS0);
|
||||
ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADATE) | _BV(ADIE) | _BV(ADPS2); // | _BV(ADPS0); */
|
||||
}
|
||||
|
||||
AFSK::PacketBuffer::PacketBuffer() {
|
||||
nextPacketIn = 0;
|
||||
nextPacketOut = 0;
|
||||
inBuffer = 0;
|
||||
for(unsigned char i = 0; i < PACKET_BUFFER_SIZE; ++i) {
|
||||
packets[i] = 0x0;
|
||||
}
|
||||
#ifdef PACKET_PREALLOCATE
|
||||
for(unsigned char i = 0; i < PPOOL_SIZE; ++i) {
|
||||
// Put some empty packets in the FIFO
|
||||
preallocPool.enqueue(&preallocPackets[i]);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
unsigned char AFSK::PacketBuffer::readyCount() volatile {
|
||||
unsigned char i;
|
||||
unsigned int cnt = 0;
|
||||
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
||||
for(i = 0; i < PACKET_BUFFER_SIZE; ++i) {
|
||||
if(packets[i] && packets[i]->ready)
|
||||
++cnt;
|
||||
}
|
||||
}
|
||||
return cnt;
|
||||
}
|
||||
|
||||
// Return NULL on empty packet buffers
|
||||
AFSK::Packet *AFSK::PacketBuffer::getPacket() volatile {
|
||||
unsigned char i = 0;
|
||||
AFSK::Packet *p = NULL;
|
||||
|
||||
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
||||
if(inBuffer == 0) {
|
||||
return 0x0;
|
||||
}
|
||||
|
||||
do {
|
||||
p = packets[nextPacketOut];
|
||||
if(p) {
|
||||
packets[nextPacketOut] = 0x0;
|
||||
--inBuffer;
|
||||
}
|
||||
nextPacketOut = ++nextPacketOut % PACKET_BUFFER_SIZE;
|
||||
++i;
|
||||
} while(!p && i<PACKET_BUFFER_SIZE);
|
||||
|
||||
// Return whatever we found, if anything
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
//void Packet::init(uint8_t *buf, unsigned int dlen, bool freeData) {
|
||||
void AFSK::Packet::init(unsigned short dlen) {
|
||||
//data = (unsigned char *)buf;
|
||||
ready = 0;
|
||||
#ifdef PACKET_PREALLOCATE
|
||||
freeData = 0;
|
||||
maxLen = PACKET_MAX_LEN; // Put it here instead
|
||||
#else
|
||||
freeData = 1;
|
||||
dataPtr = (uint8_t *)malloc(dlen+16);
|
||||
maxLen = dlen; // Put it here instead
|
||||
#endif
|
||||
type = PACKET_STATIC;
|
||||
len = 0; // We had a length, but don't put it here.
|
||||
dataPos = dataPtr;
|
||||
readPos = dataPtr;
|
||||
fcs = 0xffff;
|
||||
}
|
||||
|
||||
// Allocate a new packet with a data buffer as set
|
||||
AFSK::Packet *AFSK::PacketBuffer::makePacket(unsigned short dlen) {
|
||||
AFSK::Packet *p;
|
||||
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
||||
//Packet *p = findPooledPacket();
|
||||
#ifdef PACKET_PREALLOCATE
|
||||
if(preallocPool.count())
|
||||
p = preallocPool.dequeue();
|
||||
else p = NULL;
|
||||
#else
|
||||
p = new Packet(); //(Packet *)malloc(sizeof(Packet));
|
||||
#endif
|
||||
if(p) // If allocated
|
||||
p->init(dlen);
|
||||
}
|
||||
return p; // Passes through a null on failure.
|
||||
}
|
||||
|
||||
// Free a packet struct, mainly convenience
|
||||
void AFSK::PacketBuffer::freePacket(Packet *p) {
|
||||
if(!p)
|
||||
return;
|
||||
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
||||
#ifdef PACKET_PREALLOCATE
|
||||
preallocPool.enqueue(p);
|
||||
#else
|
||||
p->free();
|
||||
/*unsigned char i;
|
||||
for(i = 0; i < PPOOL_SIZE; ++i)
|
||||
if(p == &(pPool[i]))
|
||||
break;
|
||||
if(i < PPOOL_SIZE)
|
||||
pStatus &= ~(1<<i);*/
|
||||
delete p;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
// Put a packet onto the buffer array
|
||||
bool AFSK::PacketBuffer::putPacket(Packet *p) volatile {
|
||||
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
||||
if(inBuffer >= PACKET_BUFFER_SIZE) {
|
||||
return false;
|
||||
}
|
||||
packets[nextPacketIn] = p;
|
||||
nextPacketIn = ++nextPacketIn % PACKET_BUFFER_SIZE;
|
||||
++inBuffer;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Print a single byte to the data array
|
||||
size_t AFSK::Packet::write(uint8_t c) {
|
||||
return (appendFCS(c)?1:0);
|
||||
}
|
||||
|
||||
size_t AFSK::Packet::write(const uint8_t *ptr, size_t len) {
|
||||
size_t i;
|
||||
for(i = 0; i < len; ++i)
|
||||
if(!appendFCS(ptr[i]))
|
||||
break;
|
||||
return i;
|
||||
}
|
||||
|
||||
// Add a callsign, flagged as source, destination, or digi
|
||||
// Also tell the routine the SSID to use and if this is the final callsign
|
||||
size_t AFSK::Packet::appendCallsign(const char *callsign, uint8_t ssid, bool final) {
|
||||
uint8_t i;
|
||||
for(i = 0; i < strlen(callsign) && i < 6; i++) {
|
||||
appendFCS(callsign[i]<<1);
|
||||
}
|
||||
if(i < 6) {
|
||||
for(;i<6;i++) {
|
||||
appendFCS(' '<<1);
|
||||
}
|
||||
}
|
||||
uint8_t ssidField = (ssid&0xf) << 1;
|
||||
// TODO: Handle digis in the address C bit
|
||||
if(final) {
|
||||
ssidField |= 0b01100001;
|
||||
} else {
|
||||
ssidField |= 0b11100000;
|
||||
}
|
||||
appendFCS(ssidField);
|
||||
}
|
||||
|
||||
#ifdef PACKET_PARSER
|
||||
// Process the AX25 frame and turn it into a bunch of useful strings
|
||||
bool AFSK::Packet::parsePacket() {
|
||||
uint8_t *d = dataPtr;
|
||||
int i;
|
||||
|
||||
// First 7 bytes are destination-ssid
|
||||
for(i = 0; i < 6; i++) {
|
||||
dstCallsign[i] = (*d++)>>1;
|
||||
if(dstCallsign[i] == ' ') {
|
||||
dstCallsign[i] = '\0';
|
||||
}
|
||||
}
|
||||
dstCallsign[6] = '\0';
|
||||
dstSSID = ((*d++)>>1) & 0xF;
|
||||
|
||||
// Next 7 bytes are source-ssid
|
||||
for(i = 0; i < 6; i++) {
|
||||
srcCallsign[i] = (*d++)>>1;
|
||||
if(srcCallsign[i] == ' ') {
|
||||
srcCallsign[i] = '\0';
|
||||
}
|
||||
}
|
||||
srcCallsign[6] = '\0';
|
||||
srcSSID = *d++; // Don't shift yet, we need the LSB
|
||||
|
||||
digipeater[0][0] = '\0'; // Set null in case we have none anyway
|
||||
if((srcSSID & 1) == 0) { // Not the last address field
|
||||
int digi; // Which digi we're on
|
||||
for(digi = 0; digi < 8; digi++) {
|
||||
for(i = 0; i < 6; i++) {
|
||||
digipeater[digi][i] = (*d++)>>1;
|
||||
if(digipeater[digi][i] == ' ') {
|
||||
digipeater[digi][i] = '\0';
|
||||
}
|
||||
}
|
||||
uint8_t last = (*d) & 1;
|
||||
digipeaterSSID[digi] = ((*d++)>>1) & 0xF;
|
||||
if(last == 1)
|
||||
break;
|
||||
}
|
||||
digipeater[digi][6] = '\0';
|
||||
for(digi += 1; digi<8; digi++) { // Empty out the rest of them
|
||||
digipeater[digi][0] = '\0';
|
||||
}
|
||||
}
|
||||
|
||||
// Now handle the SSID itself
|
||||
srcSSID >>= 1;
|
||||
srcSSID &= 0xF;
|
||||
|
||||
// After the address parsing, we end up on the control field
|
||||
control = *d++;
|
||||
// We have a PID if control type is U or I
|
||||
// Control & 1 == 0 == I frame
|
||||
// Control & 3 == 3 == U frame
|
||||
if((control & 1) == 0 || (control & 3) == 3)
|
||||
pid = *d++;
|
||||
else pid = 0;
|
||||
|
||||
// If there is no PID, we have no data
|
||||
if(!pid) {
|
||||
iFrameData = NULL;
|
||||
return true;
|
||||
}
|
||||
|
||||
// At this point, we've walked far enough along that data is just at d
|
||||
iFrameData = d;
|
||||
|
||||
// Cheat a little by setting the first byte of the FCS to 0, making it a string
|
||||
// First FCS byte is found at -2, HDLC flags aren't in this buffer
|
||||
dataPtr[len-2] = '\0';
|
||||
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
|
||||
void AFSK::Packet::printPacket(Stream *s) {
|
||||
uint8_t i;
|
||||
#ifdef PACKET_PARSER
|
||||
if(!parsePacket()) {
|
||||
s->print(F("Packet not valid"));
|
||||
return;
|
||||
}
|
||||
|
||||
s->print(srcCallsign);
|
||||
if(srcSSID > 0) {
|
||||
s->write('-');
|
||||
s->print(srcSSID);
|
||||
}
|
||||
s->print(F(" > "));
|
||||
s->print(dstCallsign);
|
||||
if(dstSSID > 0) {
|
||||
s->write('-');
|
||||
s->print(dstSSID);
|
||||
}
|
||||
s->write(' ');
|
||||
if(digipeater[0][0] != '\0') {
|
||||
s->print(F("via "));
|
||||
for(i = 0; i < 8; i++) {
|
||||
if(digipeater[i][0] == '\0')
|
||||
break;
|
||||
s->print(digipeater[i]);
|
||||
if(digipeaterSSID[i] != 0) {
|
||||
s->write('-');
|
||||
s->print(digipeaterSSID[i]);
|
||||
}
|
||||
if((digipeaterSSID[i] & _BV(7)) == _BV(7)) {
|
||||
s->write('*'); // Digipeated already
|
||||
}
|
||||
// If we might have more, check to add a comma
|
||||
if(i < 7 && digipeater[i+1][0] != '\0') {
|
||||
s->write(',');
|
||||
}
|
||||
s->write(' ');
|
||||
}
|
||||
}
|
||||
|
||||
// This is an S frame, we can only print control info
|
||||
if(control & 3 == 1) {
|
||||
switch((control>>2)&3) {
|
||||
case 0:
|
||||
s->print(F("RR"));
|
||||
break;
|
||||
case 1:
|
||||
s->print(F("RNR"));
|
||||
break;
|
||||
case 2:
|
||||
s->print(F("REJ"));
|
||||
break;
|
||||
case 3: // Undefined
|
||||
s->print(F("unk"));
|
||||
break;
|
||||
}
|
||||
// Use a + to indicate poll bit
|
||||
if(control & _BV(4) == _BV(4)) {
|
||||
s->write('+');
|
||||
}
|
||||
} else if((control & 3) == 3) { // U Frame
|
||||
s->print(F("U("));
|
||||
s->print(control, HEX);
|
||||
s->write(',');
|
||||
s->print(pid, HEX);
|
||||
s->print(F(") "));
|
||||
} else if((control & 1) == 0) { // I Frame
|
||||
s->print(F("I("));
|
||||
s->print(control, HEX);
|
||||
s->write(',');
|
||||
s->print(pid, HEX);
|
||||
s->print(F(") "));
|
||||
}
|
||||
s->print(F("len "));
|
||||
s->print(len);
|
||||
s->print(F(": "));
|
||||
s->print((char *)iFrameData);
|
||||
s->println();
|
||||
#else // no packet parser, do a rudimentary print
|
||||
// Second 6 bytes are source callsign
|
||||
for(i=7; i<13; i++) {
|
||||
s->write(*(dataPtr+i)>>1);
|
||||
}
|
||||
// SSID
|
||||
s->write('-');
|
||||
s->print((*(dataPtr+13) >> 1) & 0xF);
|
||||
s->print(F(" -> "));
|
||||
// First 6 bytes are destination callsign
|
||||
for(i=0; i<6; i++) {
|
||||
s->write(*(dataPtr+i)>>1);
|
||||
}
|
||||
// SSID
|
||||
s->write('-');
|
||||
s->print((*(dataPtr+6) >> 1) & 0xF);
|
||||
// Control/PID next two bytes
|
||||
// Skip those, print payload
|
||||
for(i = 15; i<len; i++) {
|
||||
s->write(*(dataPtr+i));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
// Determine what we want to do on this ADC tick.
|
||||
void AFSK::timer() {
|
||||
static uint8_t tcnt = 0;
|
||||
if(++tcnt == T_BIT && encoder.isSending()) {
|
||||
PORTD |= _BV(6);
|
||||
// Only run the encoder every 8th tick
|
||||
// This is actually DDS RefClk / 1200 = 8, set as T_BIT
|
||||
// A different refclk needs a different value
|
||||
encoder.process();
|
||||
tcnt = 0;
|
||||
PORTD &= ~_BV(6);
|
||||
} else {
|
||||
decoder.process(((int8_t)(ADCH - 128)));
|
||||
}
|
||||
}
|
||||
|
||||
void AFSK::start(DDS *dds) {
|
||||
afskEnabled = true;
|
||||
encoder.setDDS(dds);
|
||||
decoder.start();
|
||||
}
|
|
@ -0,0 +1,302 @@
|
|||
#ifndef _AFSK_H_
|
||||
#define _AFSK_H_
|
||||
|
||||
#include <Arduino.h>
|
||||
#include <SimpleFIFO.h>
|
||||
#include <DDS.h>
|
||||
|
||||
#define SAMPLERATE 9600
|
||||
#define BITRATE 1200
|
||||
|
||||
#define SAMPLEPERBIT (SAMPLERATE / BITRATE)
|
||||
|
||||
#define RX_FIFO_LEN 16
|
||||
|
||||
#define AFSK_RX_FIFO_LEN 16
|
||||
#define PACKET_BUFFER_SIZE 2
|
||||
#define PACKET_STATIC 0
|
||||
|
||||
// Enable the packet parser which will tokenize the AX25 frame into easy strings
|
||||
#define PACKET_PARSER
|
||||
|
||||
// If this is set, all the packet buffers will be pre-allocated at compile time
|
||||
// This will use more RAM, but can make it easier to do memory planning.
|
||||
// TODO: Make this actually work right and not crash.
|
||||
#define PACKET_PREALLOCATE
|
||||
|
||||
// This is with all the digis, two addresses, and full payload
|
||||
// Dst(7) + Src(7) + Digis(56) + Ctl(1) + PID(1) + Data(0-256) + FCS(2)
|
||||
#define PACKET_MAX_LEN 330
|
||||
// Minimum is Dst + Src + Ctl + FCS
|
||||
#define AX25_PACKET_HEADER_MINLEN 17
|
||||
|
||||
// HDLC framing bits
|
||||
#define HDLC_FRAME 0x7E
|
||||
#define HDLC_RESET 0x7F
|
||||
#define HDLC_PREAMBLE 0x00
|
||||
#define HDLC_ESCAPE 0x1B
|
||||
#define HDLC_TAIL 0x1C
|
||||
|
||||
class AFSK {
|
||||
private:
|
||||
volatile bool afskEnabled;
|
||||
public:
|
||||
bool enabled() { return afskEnabled; };
|
||||
|
||||
class Packet:public Print {
|
||||
public:
|
||||
Packet():Print() {};
|
||||
virtual size_t write(uint8_t);
|
||||
// Stock virtual method does what we want here.
|
||||
//virtual size_t write(const char *);
|
||||
virtual size_t write(const uint8_t *, size_t);
|
||||
using Print::write;
|
||||
unsigned char ready : 1;
|
||||
unsigned char type : 2;
|
||||
unsigned char freeData : 1;
|
||||
unsigned short len;
|
||||
unsigned short maxLen;
|
||||
//void init(uint8_t *buf, unsigned int dlen, bool freeData);
|
||||
void init(unsigned short dlen);
|
||||
inline void free() {
|
||||
if(freeData)
|
||||
::free(dataPtr);
|
||||
}
|
||||
inline const unsigned char getByte(void) {
|
||||
return *readPos++;
|
||||
}
|
||||
inline const unsigned char getByte(uint16_t p) {
|
||||
return *(dataPtr+p);
|
||||
}
|
||||
inline void start() {
|
||||
fcs = 0xffff;
|
||||
// No longer put an explicit frame start here
|
||||
//*dataPos++ = HDLC_ESCAPE;
|
||||
//*dataPos++ = HDLC_FRAME;
|
||||
//len = 2;
|
||||
len = 0;
|
||||
}
|
||||
|
||||
inline bool append(char c) {
|
||||
if(len < maxLen) {
|
||||
++len;
|
||||
*dataPos++ = c;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
#define UPDATE_FCS(d) e=fcs^(d); f=e^(e<<4); fcs=(fcs>>8)^(f<<8)^(f<<3)^(f>>4)
|
||||
//#define UPDATE_FCS(d) s=(d)^(fcs>>8); t=s^(s>>4); fcs=(fcs<<8)^t^(t<<5)^(t<<12)
|
||||
inline bool appendFCS(unsigned char c) {
|
||||
register unsigned char e, f;
|
||||
if(len < maxLen - 4) { // Leave room for FCS/HDLC
|
||||
append(c);
|
||||
UPDATE_FCS(c);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
size_t appendCallsign(const char *callsign, uint8_t ssid, bool final = false);
|
||||
|
||||
inline void finish() {
|
||||
append(~(fcs & 0xff));
|
||||
append(~((fcs>>8) & 0xff));
|
||||
// No longer append the frame boundaries themselves
|
||||
//append(HDLC_ESCAPE);
|
||||
//append(HDLC_FRAME);
|
||||
ready = 1;
|
||||
}
|
||||
|
||||
inline void clear() {
|
||||
fcs = 0xffff;
|
||||
len = 0;
|
||||
readPos = dataPtr;
|
||||
dataPos = dataPtr;
|
||||
}
|
||||
|
||||
inline bool crcOK() {
|
||||
return (fcs == 0xF0B8);
|
||||
}
|
||||
#ifdef PACKET_PARSER
|
||||
bool parsePacket();
|
||||
#endif
|
||||
void printPacket(Stream *s);
|
||||
private:
|
||||
#ifdef PACKET_PREALLOCATE
|
||||
uint8_t dataPtr[PACKET_MAX_LEN]; // 256 byte I frame + headers max of 78
|
||||
#else
|
||||
uint8_t *dataPtr;
|
||||
#endif
|
||||
#ifdef PACKET_PARSER
|
||||
char srcCallsign[7];
|
||||
uint8_t srcSSID;
|
||||
char dstCallsign[7];
|
||||
uint8_t dstSSID;
|
||||
char digipeater[8][7];
|
||||
uint8_t digipeaterSSID[8];
|
||||
uint8_t *iFrameData;
|
||||
uint8_t length;
|
||||
uint8_t control;
|
||||
uint8_t pid;
|
||||
#endif
|
||||
uint8_t *dataPos, *readPos;
|
||||
unsigned short fcs;
|
||||
};
|
||||
|
||||
|
||||
class PacketBuffer {
|
||||
public:
|
||||
// Initialize the buffers
|
||||
PacketBuffer();
|
||||
// How many packets are in the buffer?
|
||||
unsigned char count() volatile { return inBuffer; };
|
||||
// And how many of those are ready?
|
||||
unsigned char readyCount() volatile;
|
||||
// Retrieve the next packet
|
||||
Packet *getPacket() volatile;
|
||||
// Create a packet structure as needed
|
||||
// This does not place it in the queue
|
||||
static Packet *makePacket(unsigned short);
|
||||
// Conveniently free packet memory
|
||||
static void freePacket(Packet *);
|
||||
// Place a packet into the buffer
|
||||
bool putPacket(Packet *) volatile;
|
||||
private:
|
||||
volatile unsigned char inBuffer;
|
||||
Packet * volatile packets[PACKET_BUFFER_SIZE];
|
||||
volatile unsigned char nextPacketIn;
|
||||
volatile unsigned char nextPacketOut;
|
||||
};
|
||||
|
||||
class Encoder {
|
||||
public:
|
||||
Encoder() {
|
||||
randomWait = 1000; // At the very begin, wait at least one second
|
||||
sending = false;
|
||||
done = true;
|
||||
packet = 0x0;
|
||||
currentBytePos = 0;
|
||||
nextByte = 0;
|
||||
}
|
||||
void setDDS(DDS *d) { dds = d; }
|
||||
volatile inline bool isSending() volatile {
|
||||
return sending;
|
||||
}
|
||||
volatile inline bool isDone() volatile {
|
||||
return done;
|
||||
}
|
||||
volatile inline bool hasPackets() volatile {
|
||||
return (pBuf.count() > 0);
|
||||
}
|
||||
inline bool putPacket(Packet *packet) {
|
||||
return pBuf.putPacket(packet);
|
||||
}
|
||||
inline void setRandomWait() {
|
||||
randomWait = 250 + (rand() % 1000) + millis();
|
||||
}
|
||||
bool start();
|
||||
void stop();
|
||||
void process();
|
||||
private:
|
||||
volatile bool sending;
|
||||
byte currentByte;
|
||||
byte currentBit : 1;
|
||||
byte currentTone : 1;
|
||||
byte lastZero : 3;
|
||||
byte bitPosition : 3;
|
||||
byte preamble : 6;
|
||||
//byte bitClock;
|
||||
bool hdlc;
|
||||
byte nextByte;
|
||||
byte maxTx;
|
||||
Packet *packet;
|
||||
PacketBuffer pBuf;
|
||||
unsigned int currentBytePos;
|
||||
volatile unsigned long randomWait;
|
||||
volatile bool done;
|
||||
DDS *dds;
|
||||
};
|
||||
|
||||
class HDLCDecode {
|
||||
public:
|
||||
bool hdlcParse(bool, SimpleFIFO<uint8_t,RX_FIFO_LEN> *fifo);
|
||||
volatile bool rxstart;
|
||||
private:
|
||||
uint8_t demod_bits;
|
||||
uint8_t bit_idx;
|
||||
uint8_t currchar;
|
||||
};
|
||||
|
||||
class Decoder {
|
||||
public:
|
||||
Decoder();
|
||||
void start();
|
||||
bool read();
|
||||
void process(int8_t);
|
||||
inline bool dataAvailable() {
|
||||
return (rx_fifo.count() > 0);
|
||||
}
|
||||
inline uint8_t getByte() {
|
||||
return rx_fifo.dequeue();
|
||||
}
|
||||
inline uint8_t packetCount() volatile {
|
||||
return pBuf.count();
|
||||
}
|
||||
inline Packet *getPacket() {
|
||||
return pBuf.getPacket();
|
||||
}
|
||||
inline bool isReceiving() volatile {
|
||||
return hdlc.rxstart;
|
||||
}
|
||||
private:
|
||||
Packet *currentPacket;
|
||||
//SimpleFIFO<int8_t,SAMPLEPERBIT/2+1> delay_fifo;
|
||||
SimpleFIFO<uint8_t,RX_FIFO_LEN> rx_fifo; // This should be drained fairly often
|
||||
int16_t iir_x[2];
|
||||
int16_t iir_y[2];
|
||||
uint8_t sampled_bits;
|
||||
int8_t curr_phase;
|
||||
uint8_t found_bits;
|
||||
PacketBuffer pBuf;
|
||||
HDLCDecode hdlc;
|
||||
};
|
||||
|
||||
public:
|
||||
inline bool read() {
|
||||
return decoder.read();
|
||||
}
|
||||
volatile inline bool txReady() volatile {
|
||||
if(encoder.isDone() && encoder.hasPackets())
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
volatile inline bool isDone() volatile { return encoder.isDone(); }
|
||||
inline bool txStart() {
|
||||
if(decoder.isReceiving()) {
|
||||
encoder.setRandomWait();
|
||||
return false;
|
||||
}
|
||||
return encoder.start();
|
||||
}
|
||||
inline bool putTXPacket(Packet *packet) {
|
||||
bool ret = encoder.putPacket(packet);
|
||||
if(!ret) // No room?
|
||||
PacketBuffer::freePacket(packet);
|
||||
return ret;
|
||||
}
|
||||
inline Packet *getRXPacket() {
|
||||
return decoder.getPacket();
|
||||
}
|
||||
inline uint8_t rxPacketCount() volatile {
|
||||
return decoder.packetCount();
|
||||
}
|
||||
//unsigned long lastTx;
|
||||
//unsigned long lastRx;
|
||||
void start(DDS *);
|
||||
void timer();
|
||||
Encoder encoder;
|
||||
Decoder decoder;
|
||||
};
|
||||
#endif /* _AFSK_H_ */
|
Loading…
Reference in New Issue