Compare commits

..

13 Commits

17 changed files with 1290 additions and 1018 deletions

View File

@@ -1,5 +1,43 @@
CHANGELOG
v1.14.7 - 2025-11-18
Changed:
- cmd/ca-signed: cleaned up code internally.
- lib: add base64 encoding to HexEncode.
- linter fixes.
v1.14.6 - 2025-11-18
Added:
- certlib: move tlskeypair functions into certlib.
v1.14.5 - 2025-11-18
Changed:
- certlib/verify: fix a nil-pointer dereference.
v1.14.4 - 2025-11-18
Added:
- certlib/ski: add support for return certificate SKI.
- certlib/verify: add support for verifying certificates.
Changed:
- certlib/dump: moved more functions into the dump package.
- cmd: many certificate-related commands had their functionality moved into
certlib.
v1.14.3 - 2025-11-18
Added:
- certlib/dump: the certificate dumping functions have been moved into
their own package.
Changed:
- cmd/certdump: refactor out most of the functionality into certlib/dump.
- cmd/kgz: add extended metadata support.
v1.14.2 - 2025-11-18
Added:

View File

@@ -4,6 +4,7 @@ import (
"crypto/x509"
"encoding/pem"
"errors"
"fmt"
"os"
"git.wntrmute.dev/kyle/goutils/certlib/certerr"
@@ -93,3 +94,18 @@ func LoadCertificates(path string) ([]*x509.Certificate, error) {
return ReadCertificates(in)
}
func PoolFromBytes(certBytes []byte) (*x509.CertPool, error) {
pool := x509.NewCertPool()
certs, err := ReadCertificates(certBytes)
if err != nil {
return nil, fmt.Errorf("failed to read certificates: %w", err)
}
for _, cert := range certs {
pool.AddCert(cert)
}
return pool, nil
}

339
certlib/dump/dump.go Normal file
View File

@@ -0,0 +1,339 @@
// Package dump implements tooling for dumping certificate information.
package dump
import (
"crypto/dsa"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rsa"
"crypto/sha256"
"crypto/x509"
"crypto/x509/pkix"
"fmt"
"io"
"os"
"sort"
"strings"
"github.com/kr/text"
"git.wntrmute.dev/kyle/goutils/lib"
)
const (
sSHA256 = "SHA256"
sSHA512 = "SHA512"
)
var keyUsage = map[x509.KeyUsage]string{
x509.KeyUsageDigitalSignature: "digital signature",
x509.KeyUsageContentCommitment: "content commitment",
x509.KeyUsageKeyEncipherment: "key encipherment",
x509.KeyUsageKeyAgreement: "key agreement",
x509.KeyUsageDataEncipherment: "data encipherment",
x509.KeyUsageCertSign: "cert sign",
x509.KeyUsageCRLSign: "crl sign",
x509.KeyUsageEncipherOnly: "encipher only",
x509.KeyUsageDecipherOnly: "decipher only",
}
var extKeyUsages = map[x509.ExtKeyUsage]string{
x509.ExtKeyUsageAny: "any",
x509.ExtKeyUsageServerAuth: "server auth",
x509.ExtKeyUsageClientAuth: "client auth",
x509.ExtKeyUsageCodeSigning: "code signing",
x509.ExtKeyUsageEmailProtection: "s/mime",
x509.ExtKeyUsageIPSECEndSystem: "ipsec end system",
x509.ExtKeyUsageIPSECTunnel: "ipsec tunnel",
x509.ExtKeyUsageIPSECUser: "ipsec user",
x509.ExtKeyUsageTimeStamping: "timestamping",
x509.ExtKeyUsageOCSPSigning: "ocsp signing",
x509.ExtKeyUsageMicrosoftServerGatedCrypto: "microsoft sgc",
x509.ExtKeyUsageNetscapeServerGatedCrypto: "netscape sgc",
x509.ExtKeyUsageMicrosoftCommercialCodeSigning: "microsoft commercial code signing",
x509.ExtKeyUsageMicrosoftKernelCodeSigning: "microsoft kernel code signing",
}
func sigAlgoPK(a x509.SignatureAlgorithm) string {
switch a {
case x509.MD2WithRSA, x509.MD5WithRSA, x509.SHA1WithRSA, x509.SHA256WithRSA, x509.SHA384WithRSA, x509.SHA512WithRSA:
return "RSA"
case x509.SHA256WithRSAPSS, x509.SHA384WithRSAPSS, x509.SHA512WithRSAPSS:
return "RSA-PSS"
case x509.ECDSAWithSHA1, x509.ECDSAWithSHA256, x509.ECDSAWithSHA384, x509.ECDSAWithSHA512:
return "ECDSA"
case x509.DSAWithSHA1, x509.DSAWithSHA256:
return "DSA"
case x509.PureEd25519:
return "Ed25519"
case x509.UnknownSignatureAlgorithm:
return "unknown public key algorithm"
default:
return "unknown public key algorithm"
}
}
func sigAlgoHash(a x509.SignatureAlgorithm) string {
switch a {
case x509.MD2WithRSA:
return "MD2"
case x509.MD5WithRSA:
return "MD5"
case x509.SHA1WithRSA, x509.ECDSAWithSHA1, x509.DSAWithSHA1:
return "SHA1"
case x509.SHA256WithRSA, x509.ECDSAWithSHA256, x509.DSAWithSHA256:
return sSHA256
case x509.SHA256WithRSAPSS:
return sSHA256
case x509.SHA384WithRSA, x509.ECDSAWithSHA384:
return "SHA384"
case x509.SHA384WithRSAPSS:
return "SHA384"
case x509.SHA512WithRSA, x509.ECDSAWithSHA512:
return sSHA512
case x509.SHA512WithRSAPSS:
return sSHA512
case x509.PureEd25519:
return sSHA512
case x509.UnknownSignatureAlgorithm:
return "unknown hash algorithm"
default:
return "unknown hash algorithm"
}
}
const maxLine = 78
func makeIndent(n int) string {
s := " "
var sSb97 strings.Builder
for range n {
sSb97.WriteString(" ")
}
s += sSb97.String()
return s
}
func indentLen(n int) int {
return 4 + (8 * n)
}
// this isn't real efficient, but that's not a problem here.
func wrap(s string, indent int) string {
if indent > 3 {
indent = 3
}
wrapped := text.Wrap(s, maxLine)
lines := strings.SplitN(wrapped, "\n", 2)
if len(lines) == 1 {
return lines[0]
}
if (maxLine - indentLen(indent)) <= 0 {
panic("too much indentation")
}
rest := strings.Join(lines[1:], " ")
wrapped = text.Wrap(rest, maxLine-indentLen(indent))
return lines[0] + "\n" + text.Indent(wrapped, makeIndent(indent))
}
func dumpHex(in []byte) string {
return lib.HexEncode(in, lib.HexEncodeUpperColon)
}
func certPublic(cert *x509.Certificate) string {
switch pub := cert.PublicKey.(type) {
case *rsa.PublicKey:
return fmt.Sprintf("RSA-%d", pub.N.BitLen())
case *ecdsa.PublicKey:
switch pub.Curve {
case elliptic.P256():
return "ECDSA-prime256v1"
case elliptic.P384():
return "ECDSA-secp384r1"
case elliptic.P521():
return "ECDSA-secp521r1"
default:
return "ECDSA (unknown curve)"
}
case *dsa.PublicKey:
return "DSA"
default:
return "Unknown"
}
}
func DisplayName(name pkix.Name) string {
var ns []string
if name.CommonName != "" {
ns = append(ns, name.CommonName)
}
for i := range name.Country {
ns = append(ns, fmt.Sprintf("C=%s", name.Country[i]))
}
for i := range name.Organization {
ns = append(ns, fmt.Sprintf("O=%s", name.Organization[i]))
}
for i := range name.OrganizationalUnit {
ns = append(ns, fmt.Sprintf("OU=%s", name.OrganizationalUnit[i]))
}
for i := range name.Locality {
ns = append(ns, fmt.Sprintf("L=%s", name.Locality[i]))
}
for i := range name.Province {
ns = append(ns, fmt.Sprintf("ST=%s", name.Province[i]))
}
if len(ns) > 0 {
return "/" + strings.Join(ns, "/")
}
return "*** no subject information ***"
}
func keyUsages(ku x509.KeyUsage) string {
var uses []string
for u, s := range keyUsage {
if (ku & u) != 0 {
uses = append(uses, s)
}
}
sort.Strings(uses)
return strings.Join(uses, ", ")
}
func extUsage(ext []x509.ExtKeyUsage) string {
ns := make([]string, 0, len(ext))
for i := range ext {
ns = append(ns, extKeyUsages[ext[i]])
}
sort.Strings(ns)
return strings.Join(ns, ", ")
}
func showBasicConstraints(cert *x509.Certificate) {
fmt.Fprint(os.Stdout, "\tBasic constraints: ")
if cert.BasicConstraintsValid {
fmt.Fprint(os.Stdout, "valid")
} else {
fmt.Fprint(os.Stdout, "invalid")
}
if cert.IsCA {
fmt.Fprint(os.Stdout, ", is a CA certificate")
if !cert.BasicConstraintsValid {
fmt.Fprint(os.Stdout, " (basic constraint failure)")
}
} else {
fmt.Fprint(os.Stdout, ", is not a CA certificate")
if cert.KeyUsage&x509.KeyUsageKeyEncipherment != 0 {
fmt.Fprint(os.Stdout, " (key encipherment usage enabled!)")
}
}
if (cert.MaxPathLen == 0 && cert.MaxPathLenZero) || (cert.MaxPathLen > 0) {
fmt.Fprintf(os.Stdout, ", max path length %d", cert.MaxPathLen)
}
fmt.Fprintln(os.Stdout)
}
var (
dateFormat string
showHash bool // if true, print a SHA256 hash of the certificate's Raw field
)
func wrapPrint(text string, indent int) {
tabs := ""
var tabsSb140 strings.Builder
for range indent {
tabsSb140.WriteString("\t")
}
tabs += tabsSb140.String()
fmt.Fprintf(os.Stdout, tabs+"%s\n", wrap(text, indent))
}
func DisplayCert(w io.Writer, cert *x509.Certificate) {
fmt.Fprintln(w, "CERTIFICATE")
if showHash {
fmt.Fprintln(w, wrap(fmt.Sprintf("SHA256: %x", sha256.Sum256(cert.Raw)), 0))
}
fmt.Fprintln(w, wrap("Subject: "+DisplayName(cert.Subject), 0))
fmt.Fprintln(w, wrap("Issuer: "+DisplayName(cert.Issuer), 0))
fmt.Fprintf(w, "\tSignature algorithm: %s / %s\n", sigAlgoPK(cert.SignatureAlgorithm),
sigAlgoHash(cert.SignatureAlgorithm))
fmt.Fprintln(w, "Details:")
wrapPrint("Public key: "+certPublic(cert), 1)
fmt.Fprintf(w, "\tSerial number: %s\n", cert.SerialNumber)
if len(cert.AuthorityKeyId) > 0 {
fmt.Fprintf(w, "\t%s\n", wrap("AKI: "+dumpHex(cert.AuthorityKeyId), 1))
}
if len(cert.SubjectKeyId) > 0 {
fmt.Fprintf(w, "\t%s\n", wrap("SKI: "+dumpHex(cert.SubjectKeyId), 1))
}
wrapPrint("Valid from: "+cert.NotBefore.Format(dateFormat), 1)
fmt.Fprintf(w, "\t until: %s\n", cert.NotAfter.Format(dateFormat))
fmt.Fprintf(w, "\tKey usages: %s\n", keyUsages(cert.KeyUsage))
if len(cert.ExtKeyUsage) > 0 {
fmt.Fprintf(w, "\tExtended usages: %s\n", extUsage(cert.ExtKeyUsage))
}
showBasicConstraints(cert)
validNames := make([]string, 0, len(cert.DNSNames)+len(cert.EmailAddresses)+len(cert.IPAddresses))
for i := range cert.DNSNames {
validNames = append(validNames, "dns:"+cert.DNSNames[i])
}
for i := range cert.EmailAddresses {
validNames = append(validNames, "email:"+cert.EmailAddresses[i])
}
for i := range cert.IPAddresses {
validNames = append(validNames, "ip:"+cert.IPAddresses[i].String())
}
sans := fmt.Sprintf("SANs (%d): %s\n", len(validNames), strings.Join(validNames, ", "))
wrapPrint(sans, 1)
l := len(cert.IssuingCertificateURL)
if l != 0 {
var aia string
if l == 1 {
aia = "AIA"
} else {
aia = "AIAs"
}
wrapPrint(fmt.Sprintf("%d %s:", l, aia), 1)
for _, url := range cert.IssuingCertificateURL {
wrapPrint(url, 2)
}
}
l = len(cert.OCSPServer)
if l > 0 {
title := "OCSP server"
if l > 1 {
title += "s"
}
wrapPrint(title+":\n", 1)
for _, ocspServer := range cert.OCSPServer {
wrapPrint(fmt.Sprintf("- %s\n", ocspServer), 2)
}
}
}

135
certlib/keymatch.go Normal file
View File

@@ -0,0 +1,135 @@
package certlib
import (
"bytes"
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rsa"
"crypto/x509"
"encoding/pem"
"errors"
"fmt"
"os"
)
// LoadPrivateKey loads a private key from disk. It accepts both PEM and DER
// encodings and supports RSA and ECDSA keys. If the file contains a PEM block,
// the block type must be one of the recognised private key types.
func LoadPrivateKey(path string) (crypto.Signer, error) {
in, err := os.ReadFile(path)
if err != nil {
return nil, err
}
in = bytes.TrimSpace(in)
if p, _ := pem.Decode(in); p != nil {
if !validPEMs[p.Type] {
return nil, errors.New("invalid private key file type " + p.Type)
}
return ParsePrivateKeyPEM(in)
}
return ParsePrivateKeyDER(in)
}
var validPEMs = map[string]bool{
"PRIVATE KEY": true,
"RSA PRIVATE KEY": true,
"EC PRIVATE KEY": true,
}
const (
curveInvalid = iota // any invalid curve
curveRSA // indicates key is an RSA key, not an EC key
curveP256
curveP384
curveP521
)
func getECCurve(pub any) int {
switch pub := pub.(type) {
case *ecdsa.PublicKey:
switch pub.Curve {
case elliptic.P256():
return curveP256
case elliptic.P384():
return curveP384
case elliptic.P521():
return curveP521
default:
return curveInvalid
}
case *rsa.PublicKey:
return curveRSA
default:
return curveInvalid
}
}
// matchRSA compares an RSA public key from certificate against RSA public key from private key.
// It returns true on match.
func matchRSA(certPub *rsa.PublicKey, keyPub *rsa.PublicKey) bool {
return keyPub.N.Cmp(certPub.N) == 0 && keyPub.E == certPub.E
}
// matchECDSA compares ECDSA public keys for equality and compatible curve.
// It returns match=true when they are on the same curve and have the same X/Y.
// If curves mismatch, match is false.
func matchECDSA(certPub *ecdsa.PublicKey, keyPub *ecdsa.PublicKey) bool {
if getECCurve(certPub) != getECCurve(keyPub) {
return false
}
if keyPub.X.Cmp(certPub.X) != 0 {
return false
}
if keyPub.Y.Cmp(certPub.Y) != 0 {
return false
}
return true
}
// MatchKeys determines whether the certificate's public key matches the given private key.
// It returns true if they match; otherwise, it returns false and a human-friendly reason.
func MatchKeys(cert *x509.Certificate, priv crypto.Signer) (bool, string) {
switch keyPub := priv.Public().(type) {
case *rsa.PublicKey:
switch certPub := cert.PublicKey.(type) {
case *rsa.PublicKey:
if matchRSA(certPub, keyPub) {
return true, ""
}
return false, "public keys don't match"
case *ecdsa.PublicKey:
return false, "RSA private key, EC public key"
default:
return false, fmt.Sprintf("unsupported certificate public key type: %T", cert.PublicKey)
}
case *ecdsa.PublicKey:
switch certPub := cert.PublicKey.(type) {
case *ecdsa.PublicKey:
if matchECDSA(certPub, keyPub) {
return true, ""
}
// Determine a more precise reason
kc := getECCurve(keyPub)
cc := getECCurve(certPub)
if kc == curveInvalid {
return false, "invalid private key curve"
}
if cc == curveRSA {
return false, "private key is EC, certificate is RSA"
}
if kc != cc {
return false, "EC curves don't match"
}
return false, "public keys don't match"
case *rsa.PublicKey:
return false, "private key is EC, certificate is RSA"
default:
return false, fmt.Sprintf("unsupported certificate public key type: %T", cert.PublicKey)
}
default:
return false, fmt.Sprintf("unrecognised private key type: %T", priv.Public())
}
}

157
certlib/ski/ski.go Normal file
View File

@@ -0,0 +1,157 @@
package ski
import (
"bytes"
"crypto/ecdsa"
"crypto/ed25519"
"crypto/rsa"
"crypto/sha1" // #nosec G505 this is the standard
"crypto/x509"
"crypto/x509/pkix"
"encoding/asn1"
"encoding/pem"
"fmt"
"os"
"git.wntrmute.dev/kyle/goutils/certlib"
"git.wntrmute.dev/kyle/goutils/die"
"git.wntrmute.dev/kyle/goutils/lib"
)
const (
keyTypeRSA = "RSA"
keyTypeECDSA = "ECDSA"
keyTypeEd25519 = "Ed25519"
)
type subjectPublicKeyInfo struct {
Algorithm pkix.AlgorithmIdentifier
SubjectPublicKey asn1.BitString
}
type KeyInfo struct {
PublicKey []byte
KeyType string
FileType string
}
func (k *KeyInfo) String() string {
return fmt.Sprintf("%s (%s)", lib.HexEncode(k.PublicKey, lib.HexEncodeLowerColon), k.KeyType)
}
func (k *KeyInfo) SKI(displayMode lib.HexEncodeMode) (string, error) {
var subPKI subjectPublicKeyInfo
_, err := asn1.Unmarshal(k.PublicKey, &subPKI)
if err != nil {
return "", fmt.Errorf("serializing SKI: %w", err)
}
pubHash := sha1.Sum(subPKI.SubjectPublicKey.Bytes) // #nosec G401 this is the standard
pubHashString := lib.HexEncode(pubHash[:], displayMode)
return pubHashString, nil
}
// ParsePEM parses a PEM file and returns the public key and its type.
func ParsePEM(path string) (*KeyInfo, error) {
material := &KeyInfo{}
data, err := os.ReadFile(path)
if err != nil {
return nil, fmt.Errorf("parsing X.509 material %s: %w", path, err)
}
data = bytes.TrimSpace(data)
p, rest := pem.Decode(data)
if len(rest) > 0 {
lib.Warnx("trailing data in PEM file")
}
if p == nil {
return nil, fmt.Errorf("no PEM data in %s", path)
}
data = p.Bytes
switch p.Type {
case "PRIVATE KEY", "RSA PRIVATE KEY", "EC PRIVATE KEY":
material.PublicKey, material.KeyType = parseKey(data)
material.FileType = "private key"
case "CERTIFICATE":
material.PublicKey, material.KeyType = parseCertificate(data)
material.FileType = "certificate"
case "CERTIFICATE REQUEST":
material.PublicKey, material.KeyType = parseCSR(data)
material.FileType = "certificate request"
default:
return nil, fmt.Errorf("unknown PEM type %s", p.Type)
}
return material, nil
}
func parseKey(data []byte) ([]byte, string) {
priv, err := certlib.ParsePrivateKeyDER(data)
if err != nil {
die.If(err)
}
var kt string
switch priv.Public().(type) {
case *rsa.PublicKey:
kt = keyTypeRSA
case *ecdsa.PublicKey:
kt = keyTypeECDSA
default:
die.With("unknown private key type %T", priv)
}
public, err := x509.MarshalPKIXPublicKey(priv.Public())
die.If(err)
return public, kt
}
func parseCertificate(data []byte) ([]byte, string) {
cert, err := x509.ParseCertificate(data)
die.If(err)
pub := cert.PublicKey
var kt string
switch pub.(type) {
case *rsa.PublicKey:
kt = keyTypeRSA
case *ecdsa.PublicKey:
kt = keyTypeECDSA
case *ed25519.PublicKey:
kt = keyTypeEd25519
default:
die.With("unknown public key type %T", pub)
}
public, err := x509.MarshalPKIXPublicKey(pub)
die.If(err)
return public, kt
}
func parseCSR(data []byte) ([]byte, string) {
// Use certlib to support both PEM and DER and to centralize validation.
csr, _, err := certlib.ParseCSR(data)
die.If(err)
pub := csr.PublicKey
var kt string
switch pub.(type) {
case *rsa.PublicKey:
kt = keyTypeRSA
case *ecdsa.PublicKey:
kt = keyTypeECDSA
default:
die.With("unknown public key type %T", pub)
}
public, err := x509.MarshalPKIXPublicKey(pub)
die.If(err)
return public, kt
}

49
certlib/verify/check.go Normal file
View File

@@ -0,0 +1,49 @@
package verify
import (
"crypto/x509"
"fmt"
"time"
"git.wntrmute.dev/kyle/goutils/certlib/dump"
)
const DefaultLeeway = 2160 * time.Hour // three months
type CertCheck struct {
Cert *x509.Certificate
leeway time.Duration
}
func NewCertCheck(cert *x509.Certificate, leeway time.Duration) *CertCheck {
return &CertCheck{
Cert: cert,
leeway: leeway,
}
}
func (c CertCheck) Expiry() time.Duration {
return time.Until(c.Cert.NotAfter)
}
func (c CertCheck) IsExpiring(leeway time.Duration) bool {
return c.Expiry() < leeway
}
// Err returns nil if the certificate is not expiring within the leeway period.
func (c CertCheck) Err() error {
if !c.IsExpiring(c.leeway) {
return nil
}
return fmt.Errorf("%s expires in %s", dump.DisplayName(c.Cert.Subject), c.Expiry())
}
func (c CertCheck) Name() string {
return fmt.Sprintf("%s/SN=%s", dump.DisplayName(c.Cert.Subject),
c.Cert.SerialNumber)
}
func (c CertCheck) String() string {
return fmt.Sprintf("%s expires on %s (in %s)\n", c.Name(), c.Cert.NotAfter, c.Expiry())
}

143
certlib/verify/verify.go Normal file
View File

@@ -0,0 +1,143 @@
package verify
import (
"crypto/tls"
"crypto/x509"
"errors"
"fmt"
"io"
"git.wntrmute.dev/kyle/goutils/certlib/revoke"
"git.wntrmute.dev/kyle/goutils/lib"
)
func bundleIntermediates(w io.Writer, chain []*x509.Certificate, pool *x509.CertPool, verbose bool) *x509.CertPool {
for _, intermediate := range chain[1:] {
if verbose {
fmt.Fprintf(w, "[+] adding intermediate with SKI %x\n", intermediate.SubjectKeyId)
}
pool.AddCert(intermediate)
}
return pool
}
type Opts struct {
Verbose bool
Config *tls.Config
Intermediates *x509.CertPool
ForceIntermediates bool
CheckRevocation bool
KeyUsages []x509.ExtKeyUsage
}
type verifyResult struct {
chain []*x509.Certificate
roots *x509.CertPool
ints *x509.CertPool
}
func prepareVerification(w io.Writer, target string, opts *Opts) (*verifyResult, error) {
var (
roots, ints *x509.CertPool
err error
)
if opts == nil {
opts = &Opts{
Config: lib.StrictBaselineTLSConfig(),
ForceIntermediates: false,
}
}
if opts.Config.RootCAs == nil {
roots, err = x509.SystemCertPool()
if err != nil {
return nil, fmt.Errorf("couldn't load system cert pool: %w", err)
}
opts.Config.RootCAs = roots
}
if opts.Intermediates == nil {
ints = x509.NewCertPool()
} else {
ints = opts.Intermediates.Clone()
}
roots = opts.Config.RootCAs.Clone()
chain, err := lib.GetCertificateChain(target, opts.Config)
if err != nil {
return nil, fmt.Errorf("fetching certificate chain: %w", err)
}
if opts.Verbose {
fmt.Fprintf(w, "[+] %s has %d certificates\n", target, len(chain))
}
if len(chain) > 1 && opts.ForceIntermediates {
ints = bundleIntermediates(w, chain, ints, opts.Verbose)
}
return &verifyResult{
chain: chain,
roots: roots,
ints: ints,
}, nil
}
// Chain fetches the certificate chain for a target and verifies it.
func Chain(w io.Writer, target string, opts *Opts) ([]*x509.Certificate, error) {
result, err := prepareVerification(w, target, opts)
if err != nil {
return nil, fmt.Errorf("certificate verification failed: %w", err)
}
chains, err := CertWith(result.chain[0], result.roots, result.ints, opts.CheckRevocation, opts.KeyUsages...)
if err != nil {
return nil, fmt.Errorf("certificate verification failed: %w", err)
}
return chains, nil
}
// CertWith verifies a certificate against a set of roots and intermediates.
func CertWith(
cert *x509.Certificate,
roots, ints *x509.CertPool,
checkRevocation bool,
keyUses ...x509.ExtKeyUsage,
) ([]*x509.Certificate, error) {
if len(keyUses) == 0 {
keyUses = []x509.ExtKeyUsage{x509.ExtKeyUsageAny}
}
opts := x509.VerifyOptions{
Intermediates: ints,
Roots: roots,
KeyUsages: keyUses,
}
chains, err := cert.Verify(opts)
if err != nil {
return nil, err
}
if checkRevocation {
revoked, ok := revoke.VerifyCertificate(cert)
if !ok {
return nil, errors.New("failed to check certificate revocation status")
}
if revoked {
return nil, errors.New("certificate is revoked")
}
}
if len(chains) == 0 {
return nil, errors.New("no valid certificate chain found")
}
return chains[0], nil
}

View File

@@ -1,157 +1,22 @@
package main
import (
"bytes"
"crypto/x509"
"embed"
"errors"
"flag"
"fmt"
"os"
"path/filepath"
"time"
"git.wntrmute.dev/kyle/goutils/certlib"
"git.wntrmute.dev/kyle/goutils/certlib/verify"
"git.wntrmute.dev/kyle/goutils/die"
"git.wntrmute.dev/kyle/goutils/lib"
)
// loadCertsFromFile attempts to parse certificates from a file that may be in
// PEM or DER/PKCS#7 format. Returns the parsed certificates or an error.
func loadCertsFromFile(path string) ([]*x509.Certificate, error) {
var certs []*x509.Certificate
data, err := os.ReadFile(path)
if err != nil {
return nil, err
}
if certs, err = certlib.ParseCertificatesPEM(data); err == nil {
return certs, nil
}
if certs, _, err = certlib.ParseCertificatesDER(data, ""); err == nil {
return certs, nil
}
return nil, err
}
func makePoolFromFile(path string) (*x509.CertPool, error) {
// Try PEM via helper (it builds a pool)
if pool, err := certlib.LoadPEMCertPool(path); err == nil && pool != nil {
return pool, nil
}
// Fallback: read as DER(s), add to a new pool
certs, err := loadCertsFromFile(path)
if err != nil || len(certs) == 0 {
return nil, fmt.Errorf("failed to load CA certificates from %s", path)
}
pool := x509.NewCertPool()
for _, c := range certs {
pool.AddCert(c)
}
return pool, nil
}
//go:embed testdata/*.pem
var embeddedTestdata embed.FS
// loadCertsFromBytes attempts to parse certificates from bytes that may be in
// PEM or DER/PKCS#7 format.
func loadCertsFromBytes(data []byte) ([]*x509.Certificate, error) {
certs, err := certlib.ParseCertificatesPEM(data)
if err == nil {
return certs, nil
}
certs, _, err = certlib.ParseCertificatesDER(data, "")
if err == nil {
return certs, nil
}
return nil, err
}
func makePoolFromBytes(data []byte) (*x509.CertPool, error) {
certs, err := loadCertsFromBytes(data)
if err != nil || len(certs) == 0 {
return nil, errors.New("failed to load CA certificates from embedded bytes")
}
pool := x509.NewCertPool()
for _, c := range certs {
pool.AddCert(c)
}
return pool, nil
}
// isSelfSigned returns true if the given certificate is self-signed.
// It checks that the subject and issuer match and that the certificate's
// signature verifies against its own public key.
func isSelfSigned(cert *x509.Certificate) bool {
if cert == nil {
return false
}
// Quick check: subject and issuer match
if cert.Subject.String() != cert.Issuer.String() {
return false
}
// Cryptographic check: the certificate is signed by itself
if err := cert.CheckSignatureFrom(cert); err != nil {
return false
}
return true
}
func verifyAgainstCA(caPool *x509.CertPool, path string) (bool, string) {
certs, err := loadCertsFromFile(path)
if err != nil || len(certs) == 0 {
return false, ""
}
leaf := certs[0]
ints := x509.NewCertPool()
if len(certs) > 1 {
for _, ic := range certs[1:] {
ints.AddCert(ic)
}
}
opts := x509.VerifyOptions{
Roots: caPool,
Intermediates: ints,
KeyUsages: []x509.ExtKeyUsage{x509.ExtKeyUsageAny},
}
if _, err = leaf.Verify(opts); err != nil {
return false, ""
}
return true, leaf.NotAfter.Format("2006-01-02")
}
func verifyAgainstCABytes(caPool *x509.CertPool, certData []byte) (bool, string) {
certs, err := loadCertsFromBytes(certData)
if err != nil || len(certs) == 0 {
return false, ""
}
leaf := certs[0]
ints := x509.NewCertPool()
if len(certs) > 1 {
for _, ic := range certs[1:] {
ints.AddCert(ic)
}
}
opts := x509.VerifyOptions{
Roots: caPool,
Intermediates: ints,
KeyUsages: []x509.ExtKeyUsage{x509.ExtKeyUsageAny},
}
if _, err = leaf.Verify(opts); err != nil {
return false, ""
}
return true, leaf.NotAfter.Format("2006-01-02")
}
type testCase struct {
name string
caFile string
@@ -170,18 +35,25 @@ func (tc testCase) Run() error {
return fmt.Errorf("selftest: failed to read embedded %s: %w", tc.certFile, err)
}
pool, err := makePoolFromBytes(caBytes)
pool, err := certlib.PoolFromBytes(caBytes)
if err != nil || pool == nil {
return fmt.Errorf("selftest: failed to build CA pool for %s: %w", tc.caFile, err)
}
ok, exp := verifyAgainstCABytes(pool, certBytes)
cert, _, err := certlib.ReadCertificate(certBytes)
if err != nil {
return fmt.Errorf("selftest: failed to parse certificate from %s: %w", tc.certFile, err)
}
_, err = verify.CertWith(cert, pool, nil, false)
ok := err == nil
if ok != tc.expectOK {
return fmt.Errorf("%s: unexpected result: got %v, want %v", tc.name, ok, tc.expectOK)
}
if ok {
fmt.Printf("%s: OK (expires %s)\n", tc.name, exp)
fmt.Printf("%s: OK (expires %s)\n", tc.name, cert.NotAfter.Format(lib.DateShortFormat))
}
fmt.Printf("%s: INVALID (as expected)\n", tc.name)
@@ -237,14 +109,16 @@ func selftest() int {
failures++
continue
}
certs, err := loadCertsFromBytes(b)
certs, err := certlib.ReadCertificates(b)
if err != nil || len(certs) == 0 {
fmt.Fprintf(os.Stderr, "selftest: failed to parse cert(s) from %s: %v\n", root, err)
failures++
continue
}
leaf := certs[0]
if isSelfSigned(leaf) {
if len(leaf.AuthorityKeyId) == 0 || bytes.Equal(leaf.AuthorityKeyId, leaf.SubjectKeyId) {
fmt.Printf("%s: SELF-SIGNED (as expected)\n", root)
} else {
fmt.Printf("%s: expected SELF-SIGNED, but was not detected as such\n", root)
@@ -260,66 +134,58 @@ func selftest() int {
return 1
}
// expiryString returns a YYYY-MM-DD date string to display for certificate
// expiry. If an explicit exp string is provided, it is used. Otherwise, if a
// leaf certificate is available, its NotAfter is formatted. As a last resort,
// it falls back to today's date (should not normally happen).
func expiryString(leaf *x509.Certificate, exp string) string {
if exp != "" {
return exp
}
if leaf != nil {
return leaf.NotAfter.Format("2006-01-02")
}
return time.Now().Format("2006-01-02")
}
// processCert verifies a single certificate file against the provided CA pool
// and prints the result in the required format, handling self-signed
// certificates specially.
func processCert(caPool *x509.CertPool, certPath string) {
ok, exp := verifyAgainstCA(caPool, certPath)
name := filepath.Base(certPath)
// Try to load the leaf cert for self-signed detection and expiry fallback
var leaf *x509.Certificate
if certs, err := loadCertsFromFile(certPath); err == nil && len(certs) > 0 {
leaf = certs[0]
}
// Prefer the SELF-SIGNED label if applicable
if isSelfSigned(leaf) {
fmt.Printf("%s: SELF-SIGNED\n", name)
return
}
if ok {
fmt.Printf("%s: OK (expires %s)\n", name, expiryString(leaf, exp))
return
}
fmt.Printf("%s: INVALID\n", name)
}
func main() {
// Special selftest mode: single argument "selftest"
if len(os.Args) == 2 && os.Args[1] == "selftest" {
var skipVerify, useStrict bool
lib.StrictTLSFlag(&useStrict)
flag.BoolVar(&skipVerify, "k", false, "don't verify certificates")
flag.Parse()
tcfg, err := lib.BaselineTLSConfig(skipVerify, useStrict)
die.If(err)
args := flag.Args()
if len(args) == 1 && args[0] == "selftest" {
os.Exit(selftest())
}
if len(os.Args) < 3 {
prog := filepath.Base(os.Args[0])
fmt.Fprintf(os.Stderr, "Usage:\n %s ca.pem cert1.pem cert2.pem ...\n %s selftest\n", prog, prog)
os.Exit(2)
}
caPath := os.Args[1]
caPool, err := makePoolFromFile(caPath)
if err != nil || caPool == nil {
fmt.Fprintf(os.Stderr, "failed to load CA certificate(s): %v\n", err)
if len(args) < 2 {
fmt.Println("No certificates to check.")
os.Exit(1)
}
for _, certPath := range os.Args[2:] {
processCert(caPool, certPath)
caFile := args[0]
args = args[1:]
caCert, err := certlib.LoadCertificates(caFile)
die.If(err)
if len(caCert) != 1 {
die.With("only one CA certificate should be presented.")
}
roots := x509.NewCertPool()
roots.AddCert(caCert[0])
for _, arg := range args {
var cert *x509.Certificate
cert, err = lib.GetCertificate(arg, tcfg)
if err != nil {
lib.Warn(err, "while parsing certificate from %s", arg)
continue
}
if bytes.Equal(cert.AuthorityKeyId, caCert[0].AuthorityKeyId) {
fmt.Printf("%s: SELF-SIGNED\n", arg)
continue
}
if _, err = verify.CertWith(cert, roots, nil, false); err != nil {
fmt.Printf("%s: INVALID\n", arg)
} else {
fmt.Printf("%s: OK (expires %s)\n", arg, cert.NotAfter.Format(lib.DateShortFormat))
}
}
}

View File

@@ -2,353 +2,25 @@
package main
import (
"crypto/dsa"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rsa"
"crypto/sha256"
"crypto/tls"
"crypto/x509"
"crypto/x509/pkix"
"flag"
"fmt"
"os"
"sort"
"strings"
"github.com/kr/text"
"git.wntrmute.dev/kyle/goutils/certlib/dump"
"git.wntrmute.dev/kyle/goutils/lib"
)
// following two lifted from CFSSL, (replace-regexp "\(.+\): \(.+\),"
// "\2: \1,")
const (
sSHA256 = "SHA256"
sSHA512 = "SHA512"
)
var keyUsage = map[x509.KeyUsage]string{
x509.KeyUsageDigitalSignature: "digital signature",
x509.KeyUsageContentCommitment: "content committment",
x509.KeyUsageKeyEncipherment: "key encipherment",
x509.KeyUsageKeyAgreement: "key agreement",
x509.KeyUsageDataEncipherment: "data encipherment",
x509.KeyUsageCertSign: "cert sign",
x509.KeyUsageCRLSign: "crl sign",
x509.KeyUsageEncipherOnly: "encipher only",
x509.KeyUsageDecipherOnly: "decipher only",
}
var extKeyUsages = map[x509.ExtKeyUsage]string{
x509.ExtKeyUsageAny: "any",
x509.ExtKeyUsageServerAuth: "server auth",
x509.ExtKeyUsageClientAuth: "client auth",
x509.ExtKeyUsageCodeSigning: "code signing",
x509.ExtKeyUsageEmailProtection: "s/mime",
x509.ExtKeyUsageIPSECEndSystem: "ipsec end system",
x509.ExtKeyUsageIPSECTunnel: "ipsec tunnel",
x509.ExtKeyUsageIPSECUser: "ipsec user",
x509.ExtKeyUsageTimeStamping: "timestamping",
x509.ExtKeyUsageOCSPSigning: "ocsp signing",
x509.ExtKeyUsageMicrosoftServerGatedCrypto: "microsoft sgc",
x509.ExtKeyUsageNetscapeServerGatedCrypto: "netscape sgc",
x509.ExtKeyUsageMicrosoftCommercialCodeSigning: "microsoft commercial code signing",
x509.ExtKeyUsageMicrosoftKernelCodeSigning: "microsoft kernel code signing",
}
func sigAlgoPK(a x509.SignatureAlgorithm) string {
switch a {
case x509.MD2WithRSA, x509.MD5WithRSA, x509.SHA1WithRSA, x509.SHA256WithRSA, x509.SHA384WithRSA, x509.SHA512WithRSA:
return "RSA"
case x509.SHA256WithRSAPSS, x509.SHA384WithRSAPSS, x509.SHA512WithRSAPSS:
return "RSA-PSS"
case x509.ECDSAWithSHA1, x509.ECDSAWithSHA256, x509.ECDSAWithSHA384, x509.ECDSAWithSHA512:
return "ECDSA"
case x509.DSAWithSHA1, x509.DSAWithSHA256:
return "DSA"
case x509.PureEd25519:
return "Ed25519"
case x509.UnknownSignatureAlgorithm:
return "unknown public key algorithm"
default:
return "unknown public key algorithm"
}
}
func sigAlgoHash(a x509.SignatureAlgorithm) string {
switch a {
case x509.MD2WithRSA:
return "MD2"
case x509.MD5WithRSA:
return "MD5"
case x509.SHA1WithRSA, x509.ECDSAWithSHA1, x509.DSAWithSHA1:
return "SHA1"
case x509.SHA256WithRSA, x509.ECDSAWithSHA256, x509.DSAWithSHA256:
return sSHA256
case x509.SHA256WithRSAPSS:
return sSHA256
case x509.SHA384WithRSA, x509.ECDSAWithSHA384:
return "SHA384"
case x509.SHA384WithRSAPSS:
return "SHA384"
case x509.SHA512WithRSA, x509.ECDSAWithSHA512:
return sSHA512
case x509.SHA512WithRSAPSS:
return sSHA512
case x509.PureEd25519:
return sSHA512
case x509.UnknownSignatureAlgorithm:
return "unknown hash algorithm"
default:
return "unknown hash algorithm"
}
}
const maxLine = 78
func makeIndent(n int) string {
s := " "
var sSb97 strings.Builder
for range n {
sSb97.WriteString(" ")
}
s += sSb97.String()
return s
}
func indentLen(n int) int {
return 4 + (8 * n)
}
// this isn't real efficient, but that's not a problem here.
func wrap(s string, indent int) string {
if indent > 3 {
indent = 3
}
wrapped := text.Wrap(s, maxLine)
lines := strings.SplitN(wrapped, "\n", 2)
if len(lines) == 1 {
return lines[0]
}
if (maxLine - indentLen(indent)) <= 0 {
panic("too much indentation")
}
rest := strings.Join(lines[1:], " ")
wrapped = text.Wrap(rest, maxLine-indentLen(indent))
return lines[0] + "\n" + text.Indent(wrapped, makeIndent(indent))
}
func dumpHex(in []byte) string {
return lib.HexEncode(in, lib.HexEncodeUpperColon)
}
func certPublic(cert *x509.Certificate) string {
switch pub := cert.PublicKey.(type) {
case *rsa.PublicKey:
return fmt.Sprintf("RSA-%d", pub.N.BitLen())
case *ecdsa.PublicKey:
switch pub.Curve {
case elliptic.P256():
return "ECDSA-prime256v1"
case elliptic.P384():
return "ECDSA-secp384r1"
case elliptic.P521():
return "ECDSA-secp521r1"
default:
return "ECDSA (unknown curve)"
}
case *dsa.PublicKey:
return "DSA"
default:
return "Unknown"
}
}
func displayName(name pkix.Name) string {
var ns []string
if name.CommonName != "" {
ns = append(ns, name.CommonName)
}
for i := range name.Country {
ns = append(ns, fmt.Sprintf("C=%s", name.Country[i]))
}
for i := range name.Organization {
ns = append(ns, fmt.Sprintf("O=%s", name.Organization[i]))
}
for i := range name.OrganizationalUnit {
ns = append(ns, fmt.Sprintf("OU=%s", name.OrganizationalUnit[i]))
}
for i := range name.Locality {
ns = append(ns, fmt.Sprintf("L=%s", name.Locality[i]))
}
for i := range name.Province {
ns = append(ns, fmt.Sprintf("ST=%s", name.Province[i]))
}
if len(ns) > 0 {
return "/" + strings.Join(ns, "/")
}
return "*** no subject information ***"
}
func keyUsages(ku x509.KeyUsage) string {
var uses []string
for u, s := range keyUsage {
if (ku & u) != 0 {
uses = append(uses, s)
}
}
sort.Strings(uses)
return strings.Join(uses, ", ")
}
func extUsage(ext []x509.ExtKeyUsage) string {
ns := make([]string, 0, len(ext))
for i := range ext {
ns = append(ns, extKeyUsages[ext[i]])
}
sort.Strings(ns)
return strings.Join(ns, ", ")
}
func showBasicConstraints(cert *x509.Certificate) {
fmt.Fprint(os.Stdout, "\tBasic constraints: ")
if cert.BasicConstraintsValid {
fmt.Fprint(os.Stdout, "valid")
} else {
fmt.Fprint(os.Stdout, "invalid")
}
if cert.IsCA {
fmt.Fprint(os.Stdout, ", is a CA certificate")
if !cert.BasicConstraintsValid {
fmt.Fprint(os.Stdout, " (basic constraint failure)")
}
} else {
fmt.Fprint(os.Stdout, ", is not a CA certificate")
if cert.KeyUsage&x509.KeyUsageKeyEncipherment != 0 {
fmt.Fprint(os.Stdout, " (key encipherment usage enabled!)")
}
}
if (cert.MaxPathLen == 0 && cert.MaxPathLenZero) || (cert.MaxPathLen > 0) {
fmt.Fprintf(os.Stdout, ", max path length %d", cert.MaxPathLen)
}
fmt.Fprintln(os.Stdout)
}
const oneTrueDateFormat = "2006-01-02T15:04:05-0700"
var (
var config struct {
showHash bool
dateFormat string
showHash bool // if true, print a SHA256 hash of the certificate's Raw field
)
func wrapPrint(text string, indent int) {
tabs := ""
var tabsSb140 strings.Builder
for range indent {
tabsSb140.WriteString("\t")
}
tabs += tabsSb140.String()
fmt.Fprintf(os.Stdout, tabs+"%s\n", wrap(text, indent))
}
func displayCert(cert *x509.Certificate) {
fmt.Fprintln(os.Stdout, "CERTIFICATE")
if showHash {
fmt.Fprintln(os.Stdout, wrap(fmt.Sprintf("SHA256: %x", sha256.Sum256(cert.Raw)), 0))
}
fmt.Fprintln(os.Stdout, wrap("Subject: "+displayName(cert.Subject), 0))
fmt.Fprintln(os.Stdout, wrap("Issuer: "+displayName(cert.Issuer), 0))
fmt.Fprintf(os.Stdout, "\tSignature algorithm: %s / %s\n", sigAlgoPK(cert.SignatureAlgorithm),
sigAlgoHash(cert.SignatureAlgorithm))
fmt.Fprintln(os.Stdout, "Details:")
wrapPrint("Public key: "+certPublic(cert), 1)
fmt.Fprintf(os.Stdout, "\tSerial number: %s\n", cert.SerialNumber)
if len(cert.AuthorityKeyId) > 0 {
fmt.Fprintf(os.Stdout, "\t%s\n", wrap("AKI: "+dumpHex(cert.AuthorityKeyId), 1))
}
if len(cert.SubjectKeyId) > 0 {
fmt.Fprintf(os.Stdout, "\t%s\n", wrap("SKI: "+dumpHex(cert.SubjectKeyId), 1))
}
wrapPrint("Valid from: "+cert.NotBefore.Format(dateFormat), 1)
fmt.Fprintf(os.Stdout, "\t until: %s\n", cert.NotAfter.Format(dateFormat))
fmt.Fprintf(os.Stdout, "\tKey usages: %s\n", keyUsages(cert.KeyUsage))
if len(cert.ExtKeyUsage) > 0 {
fmt.Fprintf(os.Stdout, "\tExtended usages: %s\n", extUsage(cert.ExtKeyUsage))
}
showBasicConstraints(cert)
validNames := make([]string, 0, len(cert.DNSNames)+len(cert.EmailAddresses)+len(cert.IPAddresses))
for i := range cert.DNSNames {
validNames = append(validNames, "dns:"+cert.DNSNames[i])
}
for i := range cert.EmailAddresses {
validNames = append(validNames, "email:"+cert.EmailAddresses[i])
}
for i := range cert.IPAddresses {
validNames = append(validNames, "ip:"+cert.IPAddresses[i].String())
}
sans := fmt.Sprintf("SANs (%d): %s\n", len(validNames), strings.Join(validNames, ", "))
wrapPrint(sans, 1)
l := len(cert.IssuingCertificateURL)
if l != 0 {
var aia string
if l == 1 {
aia = "AIA"
} else {
aia = "AIAs"
}
wrapPrint(fmt.Sprintf("%d %s:", l, aia), 1)
for _, url := range cert.IssuingCertificateURL {
wrapPrint(url, 2)
}
}
l = len(cert.OCSPServer)
if l > 0 {
title := "OCSP server"
if l > 1 {
title += "s"
}
wrapPrint(title+":\n", 1)
for _, ocspServer := range cert.OCSPServer {
wrapPrint(fmt.Sprintf("- %s\n", ocspServer), 2)
}
}
leafOnly bool
}
func main() {
var leafOnly bool
flag.BoolVar(&showHash, "d", false, "show hashes of raw DER contents")
flag.StringVar(&dateFormat, "s", oneTrueDateFormat, "date `format` in Go time format")
flag.BoolVar(&leafOnly, "l", false, "only show the leaf certificate")
flag.BoolVar(&config.showHash, "d", false, "show hashes of raw DER contents")
flag.StringVar(&config.dateFormat, "s", lib.OneTrueDateFormat, "date `format` in Go time format")
flag.BoolVar(&config.leafOnly, "l", false, "only show the leaf certificate")
flag.Parse()
tlsCfg := &tls.Config{InsecureSkipVerify: true} // #nosec G402 - tool intentionally inspects broken TLS
@@ -357,17 +29,17 @@ func main() {
fmt.Fprintf(os.Stdout, "--%s ---%s", filename, "\n")
certs, err := lib.GetCertificateChain(filename, tlsCfg)
if err != nil {
_, _ = lib.Warn(err, "couldn't read certificate")
lib.Warn(err, "couldn't read certificate")
continue
}
if leafOnly {
displayCert(certs[0])
if config.leafOnly {
dump.DisplayCert(os.Stdout, certs[0])
continue
}
for i := range certs {
displayCert(certs[i])
dump.DisplayCert(os.Stdout, certs[i])
}
}
}

View File

@@ -2,81 +2,22 @@ package main
import (
"crypto/x509"
"crypto/x509/pkix"
"flag"
"fmt"
"os"
"strings"
"time"
"git.wntrmute.dev/kyle/goutils/certlib/verify"
"git.wntrmute.dev/kyle/goutils/die"
"git.wntrmute.dev/kyle/goutils/lib"
)
var warnOnly bool
var leeway = 2160 * time.Hour // three months
func displayName(name pkix.Name) string {
var ns []string
if name.CommonName != "" {
ns = append(ns, name.CommonName)
}
for i := range name.Country {
ns = append(ns, fmt.Sprintf("C=%s", name.Country[i]))
}
for i := range name.Organization {
ns = append(ns, fmt.Sprintf("O=%s", name.Organization[i]))
}
for i := range name.OrganizationalUnit {
ns = append(ns, fmt.Sprintf("OU=%s", name.OrganizationalUnit[i]))
}
for i := range name.Locality {
ns = append(ns, fmt.Sprintf("L=%s", name.Locality[i]))
}
for i := range name.Province {
ns = append(ns, fmt.Sprintf("ST=%s", name.Province[i]))
}
if len(ns) > 0 {
return "/" + strings.Join(ns, "/")
}
die.With("no subject information in root")
return ""
}
func expires(cert *x509.Certificate) time.Duration {
return time.Until(cert.NotAfter)
}
func inDanger(cert *x509.Certificate) bool {
return expires(cert) < leeway
}
func checkCert(cert *x509.Certificate) {
warn := inDanger(cert)
name := displayName(cert.Subject)
name = fmt.Sprintf("%s/SN=%s", name, cert.SerialNumber)
expiry := expires(cert)
if warnOnly {
if warn {
fmt.Fprintf(os.Stderr, "%s expires on %s (in %s)\n", name, cert.NotAfter, expiry)
}
} else {
fmt.Printf("%s expires on %s (in %s)\n", name, cert.NotAfter, expiry)
}
}
func main() {
var skipVerify bool
var strictTLS bool
var (
skipVerify bool
strictTLS bool
leeway = verify.DefaultLeeway
warnOnly bool
)
lib.StrictTLSFlag(&strictTLS)
flag.BoolVar(&skipVerify, "k", false, "skip server verification") // #nosec G402
@@ -97,7 +38,16 @@ func main() {
}
for _, cert := range certs {
checkCert(cert)
check := verify.NewCertCheck(cert, leeway)
if warnOnly {
if err = check.Err(); err != nil {
lib.Warn(err, "certificate is expiring")
}
} else {
fmt.Printf("%s expires on %s (in %s)\n", check.Name(),
cert.NotAfter, check.Expiry())
}
}
}
}

View File

@@ -5,29 +5,13 @@ import (
"flag"
"fmt"
"os"
"time"
"git.wntrmute.dev/kyle/goutils/certlib"
"git.wntrmute.dev/kyle/goutils/certlib/revoke"
"git.wntrmute.dev/kyle/goutils/certlib/verify"
"git.wntrmute.dev/kyle/goutils/die"
"git.wntrmute.dev/kyle/goutils/lib"
)
func printRevocation(cert *x509.Certificate) {
remaining := time.Until(cert.NotAfter)
fmt.Printf("certificate expires in %s.\n", lib.Duration(remaining))
revoked, ok := revoke.VerifyCertificate(cert)
if !ok {
fmt.Fprintf(os.Stderr, "[!] the revocation check failed (failed to determine whether certificate\nwas revoked)")
return
}
if revoked {
fmt.Fprintf(os.Stderr, "[!] the certificate has been revoked\n")
return
}
}
type appConfig struct {
caFile, intFile string
forceIntermediateBundle bool
@@ -46,107 +30,64 @@ func parseFlags() appConfig {
flag.BoolVar(&cfg.verbose, "v", false, "verbose")
lib.StrictTLSFlag(&cfg.strictTLS)
flag.Parse()
if flag.NArg() == 0 {
die.With("usage: certverify targets...")
}
return cfg
}
func loadRoots(caFile string, verbose bool) (*x509.CertPool, error) {
if caFile == "" {
return x509.SystemCertPool()
}
if verbose {
fmt.Println("[+] loading root certificates from", caFile)
}
return certlib.LoadPEMCertPool(caFile)
}
func loadIntermediates(intFile string, verbose bool) (*x509.CertPool, error) {
if intFile == "" {
return x509.NewCertPool(), nil
}
if verbose {
fmt.Println("[+] loading intermediate certificates from", intFile)
}
// Note: use intFile here (previously used caFile mistakenly)
return certlib.LoadPEMCertPool(intFile)
}
func addBundledIntermediates(chain []*x509.Certificate, pool *x509.CertPool, verbose bool) {
for _, intermediate := range chain[1:] {
if verbose {
fmt.Printf("[+] adding intermediate with SKI %x\n", intermediate.SubjectKeyId)
}
pool.AddCert(intermediate)
}
}
func verifyCert(cert *x509.Certificate, roots, ints *x509.CertPool) error {
opts := x509.VerifyOptions{
Intermediates: ints,
Roots: roots,
KeyUsages: []x509.ExtKeyUsage{x509.ExtKeyUsageAny},
}
_, err := cert.Verify(opts)
return err
}
func run(cfg appConfig) error {
roots, err := loadRoots(cfg.caFile, cfg.verbose)
if err != nil {
return err
}
ints, err := loadIntermediates(cfg.intFile, cfg.verbose)
if err != nil {
return err
}
if flag.NArg() != 1 {
fmt.Fprintf(os.Stderr, "Usage: %s [-ca bundle] [-i bundle] cert", lib.ProgName())
}
combinedPool, err := certlib.LoadFullCertPool(cfg.caFile, cfg.intFile)
if err != nil {
return fmt.Errorf("failed to build combined pool: %w", err)
}
tlsCfg, err := lib.BaselineTLSConfig(cfg.skipVerify, cfg.strictTLS)
if err != nil {
return err
}
tlsCfg.RootCAs = combinedPool
chain, err := lib.GetCertificateChain(flag.Arg(0), tlsCfg)
if err != nil {
return err
}
if cfg.verbose {
fmt.Printf("[+] %s has %d certificates\n", flag.Arg(0), len(chain))
}
cert := chain[0]
if len(chain) > 1 && !cfg.forceIntermediateBundle {
addBundledIntermediates(chain, ints, cfg.verbose)
}
if err = verifyCert(cert, roots, ints); err != nil {
return fmt.Errorf("certificate verification failed: %w", err)
}
if cfg.verbose {
fmt.Println("OK")
}
if cfg.revexp {
printRevocation(cert)
}
return nil
}
func main() {
var (
roots, ints *x509.CertPool
err error
failed bool
)
cfg := parseFlags()
if err := run(cfg); err != nil {
fmt.Fprintf(os.Stderr, "%v\n", err)
opts := &verify.Opts{
CheckRevocation: cfg.revexp,
ForceIntermediates: cfg.forceIntermediateBundle,
Verbose: cfg.verbose,
}
if cfg.caFile != "" {
if cfg.verbose {
fmt.Printf("loading CA certificates from %s\n", cfg.caFile)
}
roots, err = certlib.LoadPEMCertPool(cfg.caFile)
die.If(err)
}
if cfg.intFile != "" {
if cfg.verbose {
fmt.Printf("loading intermediate certificates from %s\n", cfg.intFile)
}
ints, err = certlib.LoadPEMCertPool(cfg.intFile)
die.If(err)
}
opts.Config, err = lib.BaselineTLSConfig(cfg.skipVerify, cfg.strictTLS)
die.If(err)
opts.Config.RootCAs = roots
opts.Intermediates = ints
for _, arg := range flag.Args() {
_, err = verify.Chain(os.Stdout, arg, opts)
if err != nil {
lib.Warn(err, "while verifying %s", arg)
failed = true
} else {
fmt.Printf("%s: OK\n", arg)
}
}
if failed {
os.Exit(1)
}
}

View File

@@ -3,18 +3,31 @@ kgz
kgz is like gzip, but supports compressing and decompressing to a different
directory than the source file is in.
Usage: kgz [-l] source [target]
Usage: kgz [-l] [-k] [-m] [-x] [--uid N] [--gid N] source [target]
If target is a directory, the basename of the source file will be used
as the target filename. Compression and decompression is selected
based on whether the source filename ends in ".gz".
Flags:
-l level Compression level (0-9). Only meaninful when
compressing a file.
-l level Compression level (0-9). Only meaningful when compressing.
-u Do not restrict the size during decompression. As
a safeguard against gzip bombs, the maximum size
allowed is 32 * the compressed file size.
-k Keep the source file (do not remove it after successful
compression or decompression).
-m On decompression, set the file mtime from the gzip header.
-x On compression, include uid/gid/mode/ctime in the gzip Extra
field so that decompression can restore them. The Extra payload
is an ASN.1 DER-encoded struct.
--uid N When used with -x, set UID in Extra to N (override source).
--gid N When used with -x, set GID in Extra to N (override source).
Metadata notes:
- mtime is stored in the standard gzip header and restored with -m.
- uid/gid/mode/ctime are stored in a kgz-specific Extra subfield as an ASN.1
DER-encoded struct. Restoring
uid/gid may fail without sufficient privileges; such errors are ignored.

View File

@@ -3,23 +3,178 @@ package main
import (
"compress/flate"
"compress/gzip"
"encoding/asn1"
"encoding/binary"
"flag"
"fmt"
"io"
"math"
"os"
"path/filepath"
"strings"
"golang.org/x/sys/unix"
goutilslib "git.wntrmute.dev/kyle/goutils/lib"
)
const gzipExt = ".gz"
func compress(path, target string, level int) error {
// kgzExtraID is the two-byte subfield identifier used in the gzip Extra field
// for kgz-specific metadata.
var kgzExtraID = [2]byte{'K', 'G'}
// buildKGExtra constructs the gzip Extra subfield payload for kgz metadata.
//
// The payload is an ASN.1 DER-encoded struct with the following fields:
//
// Version INTEGER (currently 1)
// UID INTEGER
// GID INTEGER
// Mode INTEGER (permission bits)
// CTimeSec INTEGER (seconds)
// CTimeNSec INTEGER (nanoseconds)
//
// The ASN.1 blob is wrapped in a gzip Extra subfield with ID 'K','G'.
func buildKGExtra(uid, gid, mode uint32, ctimeS int64, ctimeNs int32) []byte {
// Define the ASN.1 structure to encode
type KGZExtra struct {
Version int
UID int
GID int
Mode int
CTimeSec int64
CTimeNSec int32
}
payload, err := asn1.Marshal(KGZExtra{
Version: 1,
UID: int(uid),
GID: int(gid),
Mode: int(mode),
CTimeSec: ctimeS,
CTimeNSec: ctimeNs,
})
if err != nil {
// On marshal failure, return empty to avoid breaking compression
return nil
}
// Wrap in gzip subfield: [ID1 ID2 LEN(lo) LEN(hi) PAYLOAD]
// Guard against payload length overflow to uint16 for the extra subfield length.
if len(payload) > int(math.MaxUint16) {
return nil
}
extra := make([]byte, 4+len(payload))
extra[0] = kgzExtraID[0]
extra[1] = kgzExtraID[1]
binary.LittleEndian.PutUint16(extra[2:], uint16(len(payload)&0xFFFF)) //#nosec G115 - masked
copy(extra[4:], payload)
return extra
}
// clampToInt32 clamps an int value into the int32 range using a switch to
// satisfy linters that prefer switch over if-else chains for ordered checks.
func clampToInt32(v int) int32 {
switch {
case v > int(math.MaxInt32):
return math.MaxInt32
case v < int(math.MinInt32):
return math.MinInt32
default:
return int32(v)
}
}
// buildExtraForPath prepares the gzip Extra field for kgz by collecting
// uid/gid/mode and ctime information, applying any overrides, and encoding it.
func buildExtraForPath(st unix.Stat_t, path string, setUID, setGID int) []byte {
uid := st.Uid
gid := st.Gid
if setUID >= 0 {
if uint64(setUID) <= math.MaxUint32 {
uid = uint32(setUID & 0xFFFFFFFF) //#nosec G115 - masked
}
}
if setGID >= 0 {
if uint64(setGID) <= math.MaxUint32 {
gid = uint32(setGID & 0xFFFFFFFF) //#nosec G115 - masked
}
}
mode := uint32(st.Mode & 0o7777)
// Use portable helper to gather ctime
var cts int64
var ctns int32
if ft, err := goutilslib.LoadFileTime(path); err == nil {
cts = ft.Changed.Unix()
ctns = clampToInt32(ft.Changed.Nanosecond())
}
return buildKGExtra(uid, gid, mode, cts, ctns)
}
// parseKGExtra scans a gzip Extra blob and returns kgz metadata if present.
func parseKGExtra(extra []byte) (uint32, uint32, uint32, int64, int32, bool) {
i := 0
for i+4 <= len(extra) {
id1 := extra[i]
id2 := extra[i+1]
l := int(binary.LittleEndian.Uint16(extra[i+2 : i+4]))
i += 4
if i+l > len(extra) {
break
}
if id1 == kgzExtraID[0] && id2 == kgzExtraID[1] {
// ASN.1 decode payload
payload := extra[i : i+l]
var s struct {
Version int
UID int
GID int
Mode int
CTimeSec int64
CTimeNSec int32
}
if _, err := asn1.Unmarshal(payload, &s); err != nil {
return 0, 0, 0, 0, 0, false
}
if s.Version != 1 {
return 0, 0, 0, 0, 0, false
}
// Validate ranges before converting from int -> uint32 to avoid overflow.
if s.UID < 0 || s.GID < 0 || s.Mode < 0 {
return 0, 0, 0, 0, 0, false
}
if uint64(s.UID) > math.MaxUint32 || uint64(s.GID) > math.MaxUint32 || uint64(s.Mode) > math.MaxUint32 {
return 0, 0, 0, 0, 0, false
}
return uint32(s.UID & 0xFFFFFFFF), uint32(s.GID & 0xFFFFFFFF),
uint32(s.Mode & 0xFFFFFFFF), s.CTimeSec, s.CTimeNSec, true //#nosec G115 - masked
}
i += l
}
return 0, 0, 0, 0, 0, false
}
func compress(path, target string, level int, includeExtra bool, setUID, setGID int) error {
sourceFile, err := os.Open(path)
if err != nil {
return fmt.Errorf("opening file for read: %w", err)
}
defer sourceFile.Close()
// Gather file metadata
var st unix.Stat_t
if err = unix.Stat(path, &st); err != nil {
return fmt.Errorf("stat source: %w", err)
}
fi, err := sourceFile.Stat()
if err != nil {
return fmt.Errorf("stat source file: %w", err)
}
destFile, err := os.Create(target)
if err != nil {
return fmt.Errorf("opening file for write: %w", err)
@@ -30,6 +185,11 @@ func compress(path, target string, level int) error {
if err != nil {
return fmt.Errorf("invalid compression level: %w", err)
}
// Set header metadata
gzipCompressor.ModTime = fi.ModTime()
if includeExtra {
gzipCompressor.Extra = buildExtraForPath(st, path, setUID, setGID)
}
defer gzipCompressor.Close()
_, err = io.Copy(gzipCompressor, sourceFile)
@@ -40,7 +200,7 @@ func compress(path, target string, level int) error {
return nil
}
func uncompress(path, target string, unrestrict bool) error {
func uncompress(path, target string, unrestrict bool, preserveMtime bool) error {
sourceFile, err := os.Open(path)
if err != nil {
return fmt.Errorf("opening file for read: %w", err)
@@ -79,19 +239,40 @@ func uncompress(path, target string, unrestrict bool) error {
if err != nil {
return fmt.Errorf("uncompressing file: %w", err)
}
// Apply metadata from Extra (uid/gid/mode) if present
if gzipUncompressor.Header.Extra != nil {
if uid, gid, mode, _, _, ok := parseKGExtra(gzipUncompressor.Header.Extra); ok {
// Chmod
_ = os.Chmod(target, os.FileMode(mode))
// Chown (may fail without privileges)
_ = os.Chown(target, int(uid), int(gid))
}
}
// Preserve mtime if requested
if preserveMtime {
mt := gzipUncompressor.Header.ModTime
if !mt.IsZero() {
// Set both atime and mtime to mt for simplicity
_ = os.Chtimes(target, mt, mt)
}
}
return nil
}
func usage(w io.Writer) {
fmt.Fprintf(w, `Usage: %s [-l] source [target]
fmt.Fprintf(w, `Usage: %s [-l] [-k] [-m] [-x] [--uid N] [--gid N] source [target]
kgz is like gzip, but supports compressing and decompressing to a different
directory than the source file is in.
Flags:
-l level Compression level (0-9). Only meaninful when
compressing a file.
-l level Compression level (0-9). Only meaningful when compressing.
-u Do not restrict the size during decompression (gzip bomb guard is 32x).
-k Keep the source file (do not remove it after successful (de)compression).
-m On decompression, set the file mtime from the gzip header.
-x On compression, include uid/gid/mode/ctime in the gzip Extra field.
--uid N When used with -x, set UID in Extra to N (overrides source owner).
--gid N When used with -x, set GID in Extra to N (overrides source group).
`, os.Args[0])
}
@@ -150,9 +331,19 @@ func main() {
var target = "."
var err error
var unrestrict bool
var keep bool
var preserveMtime bool
var includeExtra bool
var setUID int
var setGID int
flag.IntVar(&level, "l", flate.DefaultCompression, "compression level")
flag.BoolVar(&unrestrict, "u", false, "do not restrict decompression")
flag.BoolVar(&keep, "k", false, "keep the source file (do not remove it)")
flag.BoolVar(&preserveMtime, "m", false, "on decompression, set mtime from gzip header")
flag.BoolVar(&includeExtra, "x", false, "on compression, include uid/gid/mode/ctime in gzip Extra")
flag.IntVar(&setUID, "uid", -1, "when used with -x, set UID in Extra to this value")
flag.IntVar(&setGID, "gid", -1, "when used with -x, set GID in Extra to this value")
flag.Parse()
if flag.NArg() < 1 || flag.NArg() > 2 {
@@ -172,12 +363,15 @@ func main() {
os.Exit(1)
}
err = uncompress(path, target, unrestrict)
err = uncompress(path, target, unrestrict, preserveMtime)
if err != nil {
os.Remove(target)
fmt.Fprintf(os.Stderr, "%s\n", err)
os.Exit(1)
}
if !keep {
_ = os.Remove(path)
}
return
}
@@ -187,10 +381,13 @@ func main() {
os.Exit(1)
}
err = compress(path, target, level)
err = compress(path, target, level, includeExtra, setUID, setGID)
if err != nil {
os.Remove(target)
fmt.Fprintf(os.Stderr, "%s\n", err)
os.Exit(1)
}
if !keep {
_ = os.Remove(path)
}
}

View File

@@ -1,29 +1,19 @@
package main
import (
"bytes"
"crypto/ecdsa"
"crypto/rsa"
"crypto/sha1" // #nosec G505
"crypto/x509"
"crypto/x509/pkix"
"encoding/asn1"
"encoding/pem"
// #nosec G505
"flag"
"fmt"
"io"
"os"
"git.wntrmute.dev/kyle/goutils/certlib"
"git.wntrmute.dev/kyle/goutils/certlib/ski"
"git.wntrmute.dev/kyle/goutils/die"
"git.wntrmute.dev/kyle/goutils/lib"
)
const (
keyTypeRSA = "RSA"
keyTypeECDSA = "ECDSA"
)
func usage(w io.Writer) {
fmt.Fprintf(w, `ski: print subject key info for PEM-encoded files
@@ -42,117 +32,6 @@ func init() {
flag.Usage = func() { usage(os.Stderr) }
}
func parse(path string) ([]byte, string, string) {
data, err := os.ReadFile(path)
die.If(err)
data = bytes.TrimSpace(data)
p, rest := pem.Decode(data)
if len(rest) > 0 {
_, _ = lib.Warnx("trailing data in PEM file")
}
if p == nil {
die.With("no PEM data found")
}
data = p.Bytes
var (
public []byte
kt string
ft string
)
switch p.Type {
case "PRIVATE KEY", "RSA PRIVATE KEY", "EC PRIVATE KEY":
public, kt = parseKey(data)
ft = "private key"
case "CERTIFICATE":
public, kt = parseCertificate(data)
ft = "certificate"
case "CERTIFICATE REQUEST":
public, kt = parseCSR(data)
ft = "certificate request"
default:
die.With("unknown PEM type %s", p.Type)
}
return public, kt, ft
}
func parseKey(data []byte) ([]byte, string) {
priv, err := certlib.ParsePrivateKeyDER(data)
if err != nil {
die.If(err)
}
var kt string
switch priv.Public().(type) {
case *rsa.PublicKey:
kt = keyTypeRSA
case *ecdsa.PublicKey:
kt = keyTypeECDSA
default:
die.With("unknown private key type %T", priv)
}
public, err := x509.MarshalPKIXPublicKey(priv.Public())
die.If(err)
return public, kt
}
func parseCertificate(data []byte) ([]byte, string) {
cert, err := x509.ParseCertificate(data)
die.If(err)
pub := cert.PublicKey
var kt string
switch pub.(type) {
case *rsa.PublicKey:
kt = keyTypeRSA
case *ecdsa.PublicKey:
kt = keyTypeECDSA
default:
die.With("unknown public key type %T", pub)
}
public, err := x509.MarshalPKIXPublicKey(pub)
die.If(err)
return public, kt
}
func parseCSR(data []byte) ([]byte, string) {
// Use certlib to support both PEM and DER and to centralize validation.
csr, _, err := certlib.ParseCSR(data)
die.If(err)
pub := csr.PublicKey
var kt string
switch pub.(type) {
case *rsa.PublicKey:
kt = keyTypeRSA
case *ecdsa.PublicKey:
kt = keyTypeECDSA
default:
die.With("unknown public key type %T", pub)
}
public, err := x509.MarshalPKIXPublicKey(pub)
die.If(err)
return public, kt
}
func dumpHex(in []byte, mode lib.HexEncodeMode) string {
return lib.HexEncode(in, mode)
}
type subjectPublicKeyInfo struct {
Algorithm pkix.AlgorithmIdentifier
SubjectPublicKey asn1.BitString
}
func main() {
var help, shouldMatch bool
var displayModeString string
@@ -168,27 +47,22 @@ func main() {
os.Exit(0)
}
var ski string
var matchSKI string
for _, path := range flag.Args() {
public, kt, ft := parse(path)
keyInfo, err := ski.ParsePEM(path)
die.If(err)
var subPKI subjectPublicKeyInfo
_, err := asn1.Unmarshal(public, &subPKI)
if err != nil {
_, _ = lib.Warn(err, "failed to get subject PKI")
continue
keySKI, err := keyInfo.SKI(displayMode)
die.If(err)
if matchSKI == "" {
matchSKI = keySKI
}
pubHash := sha1.Sum(subPKI.SubjectPublicKey.Bytes) // #nosec G401 this is the standard
pubHashString := dumpHex(pubHash[:], displayMode)
if ski == "" {
ski = pubHashString
}
if shouldMatch && ski != pubHashString {
if shouldMatch && matchSKI != keySKI {
_, _ = lib.Warnx("%s: SKI mismatch (%s != %s)",
path, ski, pubHashString)
path, matchSKI, keySKI)
}
fmt.Printf("%s %s (%s %s)\n", path, pubHashString, kt, ft)
fmt.Printf("%s %s (%s %s)\n", path, keySKI, keyInfo.KeyType, keyInfo.FileType)
}
}

View File

@@ -1,14 +1,6 @@
package main
import (
"bytes"
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rsa"
"crypto/x509"
"encoding/pem"
"errors"
"flag"
"fmt"
"os"
@@ -17,123 +9,7 @@ import (
"git.wntrmute.dev/kyle/goutils/die"
)
var validPEMs = map[string]bool{
"PRIVATE KEY": true,
"RSA PRIVATE KEY": true,
"EC PRIVATE KEY": true,
}
const (
curveInvalid = iota // any invalid curve
curveRSA // indicates key is an RSA key, not an EC key
curveP256
curveP384
curveP521
)
func getECCurve(pub any) int {
switch pub := pub.(type) {
case *ecdsa.PublicKey:
switch pub.Curve {
case elliptic.P256():
return curveP256
case elliptic.P384():
return curveP384
case elliptic.P521():
return curveP521
default:
return curveInvalid
}
case *rsa.PublicKey:
return curveRSA
default:
return curveInvalid
}
}
// matchRSA compares an RSA public key from certificate against RSA public key from private key.
// It returns true on match.
func matchRSA(certPub *rsa.PublicKey, keyPub *rsa.PublicKey) bool {
return keyPub.N.Cmp(certPub.N) == 0 && keyPub.E == certPub.E
}
// matchECDSA compares ECDSA public keys for equality and compatible curve.
// It returns match=true when they are on the same curve and have the same X/Y.
// If curves mismatch, match is false.
func matchECDSA(certPub *ecdsa.PublicKey, keyPub *ecdsa.PublicKey) bool {
if getECCurve(certPub) != getECCurve(keyPub) {
return false
}
if keyPub.X.Cmp(certPub.X) != 0 {
return false
}
if keyPub.Y.Cmp(certPub.Y) != 0 {
return false
}
return true
}
// matchKeys determines whether the certificate's public key matches the given private key.
// It returns true if they match; otherwise, it returns false and a human-friendly reason.
func matchKeys(cert *x509.Certificate, priv crypto.Signer) (bool, string) {
switch keyPub := priv.Public().(type) {
case *rsa.PublicKey:
switch certPub := cert.PublicKey.(type) {
case *rsa.PublicKey:
if matchRSA(certPub, keyPub) {
return true, ""
}
return false, "public keys don't match"
case *ecdsa.PublicKey:
return false, "RSA private key, EC public key"
default:
return false, fmt.Sprintf("unsupported certificate public key type: %T", cert.PublicKey)
}
case *ecdsa.PublicKey:
switch certPub := cert.PublicKey.(type) {
case *ecdsa.PublicKey:
if matchECDSA(certPub, keyPub) {
return true, ""
}
// Determine a more precise reason
kc := getECCurve(keyPub)
cc := getECCurve(certPub)
if kc == curveInvalid {
return false, "invalid private key curve"
}
if cc == curveRSA {
return false, "private key is EC, certificate is RSA"
}
if kc != cc {
return false, "EC curves don't match"
}
return false, "public keys don't match"
case *rsa.PublicKey:
return false, "private key is EC, certificate is RSA"
default:
return false, fmt.Sprintf("unsupported certificate public key type: %T", cert.PublicKey)
}
default:
return false, fmt.Sprintf("unrecognised private key type: %T", priv.Public())
}
}
func loadKey(path string) (crypto.Signer, error) {
in, err := os.ReadFile(path)
if err != nil {
return nil, err
}
in = bytes.TrimSpace(in)
if p, _ := pem.Decode(in); p != nil {
if !validPEMs[p.Type] {
return nil, errors.New("invalid private key file type " + p.Type)
}
return certlib.ParsePrivateKeyPEM(in)
}
return certlib.ParsePrivateKeyDER(in)
}
// functionality refactored into certlib
func main() {
var keyFile, certFile string
@@ -141,23 +17,13 @@ func main() {
flag.StringVar(&certFile, "c", "", "TLS `certificate` file")
flag.Parse()
in, err := os.ReadFile(certFile)
cert, err := certlib.LoadCertificate(certFile)
die.If(err)
p, _ := pem.Decode(in)
if p != nil {
if p.Type != "CERTIFICATE" {
die.With("invalid certificate (type is %s)", p.Type)
}
in = p.Bytes
}
cert, err := x509.ParseCertificate(in)
priv, err := certlib.LoadPrivateKey(keyFile)
die.If(err)
priv, err := loadKey(keyFile)
die.If(err)
matched, reason := matchKeys(cert, priv)
matched, reason := certlib.MatchKeys(cert, priv)
if matched {
fmt.Println("Match.")
return

View File

@@ -11,3 +11,11 @@ const (
// ExitFailure is the failing exit status.
ExitFailure = 1
)
const (
OneTrueDateFormat = "2006-01-02T15:04:05-0700"
DateShortFormat = "2006-01-02"
TimeShortFormat = "15:04:05"
TimeShorterFormat = "15:04"
TimeStandardDateTime = "2006-01-02 15:04"
)

View File

@@ -1,6 +1,7 @@
package lib
import (
"encoding/base64"
"encoding/hex"
"fmt"
"os"
@@ -126,6 +127,8 @@ const (
HexEncodeUpperColon
// HexEncodeBytes prints the string as a sequence of []byte.
HexEncodeBytes
// HexEncodeBase64 prints the string as a base64-encoded string.
HexEncodeBase64
)
func (m HexEncodeMode) String() string {
@@ -140,6 +143,8 @@ func (m HexEncodeMode) String() string {
return "ucolon"
case HexEncodeBytes:
return "bytes"
case HexEncodeBase64:
return "base64"
default:
panic("invalid hex encode mode")
}
@@ -157,6 +162,8 @@ func ParseHexEncodeMode(s string) HexEncodeMode {
return HexEncodeUpperColon
case "bytes":
return HexEncodeBytes
case "base64":
return HexEncodeBase64
}
panic("invalid hex encode mode")
@@ -218,21 +225,22 @@ func bytesAsByteSliceString(buf []byte) string {
return sb.String()
}
// HexEncode encodes the given bytes as a hexadecimal string.
// HexEncode encodes the given bytes as a hexadecimal string. It
// also supports a few other binary-encoding formats as well.
func HexEncode(b []byte, mode HexEncodeMode) string {
str := hexEncode(b)
switch mode {
case HexEncodeLower:
return str
return hexEncode(b)
case HexEncodeUpper:
return strings.ToUpper(str)
return strings.ToUpper(hexEncode(b))
case HexEncodeLowerColon:
return hexColons(str)
return hexColons(hexEncode(b))
case HexEncodeUpperColon:
return strings.ToUpper(hexColons(str))
return strings.ToUpper(hexColons(hexEncode(b)))
case HexEncodeBytes:
return bytesAsByteSliceString(b)
case HexEncodeBase64:
return base64.StdEncoding.EncodeToString(b)
default:
panic("invalid hex encode mode")
}