Files
goutils/cache/lru/lru.go
2025-11-15 23:48:00 -08:00

180 lines
3.7 KiB
Go

// Package lru implements a Least Recently Used cache.
package lru
import (
"errors"
"fmt"
"sort"
"sync"
"github.com/benbjohnson/clock"
)
type item[V any] struct {
V V
access int64
}
// A Cache is a map that retains a limited number of items. It must be
// initialized with New, providing a maximum capacity for the cache.
// Only the least recently used items are retained.
type Cache[K comparable, V any] struct {
store map[K]*item[V]
access *timestamps[K]
cap int
clock clock.Clock
// All public methods that have the possibility of modifying the
// cache should lock it.
mtx *sync.Mutex
}
// New must be used to create a new Cache.
func New[K comparable, V any](icap int) *Cache[K, V] {
return &Cache[K, V]{
store: map[K]*item[V]{},
access: newTimestamps[K](icap),
cap: icap,
clock: clock.New(),
mtx: &sync.Mutex{},
}
}
// StringKeyCache is a convenience wrapper for cache keyed by string.
type StringKeyCache[V any] struct {
*Cache[string, V]
}
// NewStringKeyCache creates a new LRU cache keyed by string.
func NewStringKeyCache[V any](icap int) *StringKeyCache[V] {
return &StringKeyCache[V]{Cache: New[string, V](icap)}
}
func (c *Cache[K, V]) lock() {
c.mtx.Lock()
}
func (c *Cache[K, V]) unlock() {
c.mtx.Unlock()
}
// Len returns the number of items currently in the cache.
func (c *Cache[K, V]) Len() int {
return len(c.store)
}
// evict should remove the least-recently-used cache item.
func (c *Cache[K, V]) evict() {
if c.access.Len() == 0 {
return
}
k := c.access.K(0)
c.evictKey(k)
}
// evictKey should remove the entry given by the key item.
func (c *Cache[K, V]) evictKey(k K) {
delete(c.store, k)
i, ok := c.access.Find(k)
if !ok {
return
}
c.access.Delete(i)
}
func (c *Cache[K, V]) sanityCheck() {
if len(c.store) != c.access.Len() {
panic(fmt.Sprintf("LRU cache is out of sync; store len = %d, access len = %d",
len(c.store), c.access.Len()))
}
}
// ConsistencyCheck runs a series of checks to ensure that the cache's
// data structures are consistent. It is not normally required, and it
// is primarily used in testing.
func (c *Cache[K, V]) ConsistencyCheck() error {
c.lock()
defer c.unlock()
if err := c.access.ConsistencyCheck(); err != nil {
return err
}
if len(c.store) != c.access.Len() {
return fmt.Errorf("lru: cache is out of sync; store len = %d, access len = %d",
len(c.store), c.access.Len())
}
for i := range c.access.ts {
itm, ok := c.store[c.access.K(i)]
if !ok {
return errors.New("lru: key in access is not in store")
}
if c.access.T(i) != itm.access {
return fmt.Errorf("timestamps are out of sync (%d != %d)",
itm.access, c.access.T(i))
}
}
if !sort.IsSorted(c.access) {
return errors.New("lru: timestamps aren't sorted")
}
return nil
}
// Store adds the value v to the cache under the k.
func (c *Cache[K, V]) Store(k K, v V) {
c.lock()
defer c.unlock()
c.sanityCheck()
if len(c.store) == c.cap {
c.evict()
}
if _, ok := c.store[k]; ok {
c.evictKey(k)
}
itm := &item[V]{
V: v,
access: c.clock.Now().UnixNano(),
}
c.store[k] = itm
c.access.Update(k, itm.access)
}
// Get returns the value stored in the cache. If the item isn't present,
// it will return false.
func (c *Cache[K, V]) Get(k K) (V, bool) {
c.lock()
defer c.unlock()
c.sanityCheck()
itm, ok := c.store[k]
if !ok {
var zero V
return zero, false
}
c.store[k].access = c.clock.Now().UnixNano()
c.access.Update(k, itm.access)
return itm.V, true
}
// Has returns true if the cache has an entry for k. It will not update
// the timestamp on the item.
func (c *Cache[K, V]) Has(k K) bool {
// Don't need to lock as we don't modify anything.
c.sanityCheck()
_, ok := c.store[k]
return ok
}