Introduce PieceTable-based buffer backend (Phase 1)

- Added `PieceTable` class for efficient text manipulation and implemented core editing APIs (`Insert`, `Delete`, `Find`, etc.).
- Integrated `PieceTable` into `Buffer` class with an adapter for rows caching.
- Enabled seamless switching between legacy row-based and new PieceTable-backed editing via `KTE_USE_BUFFER_PIECE_TABLE`.
- Updated file I/O, line-based queries, and cursor operations to support PieceTable-based storage.
- Lazy rebuilding of line index and improved management of edit state for performance.
This commit is contained in:
2025-12-05 15:29:35 -08:00
parent 222f73252b
commit afb6888c31
6 changed files with 722 additions and 73 deletions

View File

@@ -1,5 +1,6 @@
#include <algorithm>
#include <utility>
#include <limits>
#include "PieceTable.h"
@@ -151,6 +152,8 @@ PieceTable::Clear()
materialized_.clear();
total_size_ = 0;
dirty_ = true;
line_index_.clear();
line_index_dirty_ = true;
}
@@ -179,6 +182,7 @@ PieceTable::addPieceBack(const Source src, const std::size_t start, const std::s
pieces_.push_back(Piece{src, start, len});
total_size_ += len;
dirty_ = true;
InvalidateLineIndex();
}
@@ -203,6 +207,7 @@ PieceTable::addPieceFront(Source src, std::size_t start, std::size_t len)
pieces_.insert(pieces_.begin(), Piece{src, start, len});
total_size_ += len;
dirty_ = true;
InvalidateLineIndex();
}
@@ -225,3 +230,308 @@ PieceTable::materialize() const
// Ensure there is a null terminator present via std::string invariants
dirty_ = false;
}
// ===== New Phase 1 implementation =====
std::pair<std::size_t, std::size_t>
PieceTable::locate(const std::size_t byte_offset) const
{
if (byte_offset >= total_size_) {
return {pieces_.size(), 0};
}
std::size_t off = byte_offset;
for (std::size_t i = 0; i < pieces_.size(); ++i) {
const auto &p = pieces_[i];
if (off < p.len) {
return {i, off};
}
off -= p.len;
}
// Should not reach here unless inconsistency; return end
return {pieces_.size(), 0};
}
void
PieceTable::coalesceNeighbors(std::size_t index)
{
if (pieces_.empty())
return;
if (index >= pieces_.size())
index = pieces_.size() - 1;
// Try merge with previous
if (index > 0) {
auto &prev = pieces_[index - 1];
auto &curr = pieces_[index];
if (prev.src == curr.src && prev.start + prev.len == curr.start) {
prev.len += curr.len;
pieces_.erase(pieces_.begin() + static_cast<std::ptrdiff_t>(index));
if (index > 0)
index -= 1;
}
}
// Try merge with next (index may have shifted)
if (index + 1 < pieces_.size()) {
auto &curr = pieces_[index];
auto &next = pieces_[index + 1];
if (curr.src == next.src && curr.start + curr.len == next.start) {
curr.len += next.len;
pieces_.erase(pieces_.begin() + static_cast<std::ptrdiff_t>(index + 1));
}
}
}
void
PieceTable::InvalidateLineIndex() const
{
line_index_dirty_ = true;
}
void
PieceTable::RebuildLineIndex() const
{
if (!line_index_dirty_)
return;
line_index_.clear();
line_index_.push_back(0);
std::size_t pos = 0;
for (const auto &pc: pieces_) {
const std::string &src = pc.src == Source::Original ? original_ : add_;
const char *base = src.data() + static_cast<std::ptrdiff_t>(pc.start);
for (std::size_t j = 0; j < pc.len; ++j) {
if (base[j] == '\n') {
// next line starts after the newline
line_index_.push_back(pos + j + 1);
}
}
pos += pc.len;
}
line_index_dirty_ = false;
}
void
PieceTable::Insert(std::size_t byte_offset, const char *text, std::size_t len)
{
if (len == 0)
return;
if (byte_offset > total_size_)
byte_offset = total_size_;
const std::size_t add_start = add_.size();
add_.append(text, len);
if (pieces_.empty()) {
pieces_.push_back(Piece{Source::Add, add_start, len});
total_size_ += len;
dirty_ = true;
InvalidateLineIndex();
return;
}
auto [idx, inner] = locate(byte_offset);
if (idx == pieces_.size()) {
// insert at end
pieces_.push_back(Piece{Source::Add, add_start, len});
total_size_ += len;
dirty_ = true;
InvalidateLineIndex();
coalesceNeighbors(pieces_.size() - 1);
return;
}
Piece target = pieces_[idx];
// Build replacement sequence: left, inserted, right
std::vector<Piece> repl;
repl.reserve(3);
if (inner > 0) {
repl.push_back(Piece{target.src, target.start, inner});
}
repl.push_back(Piece{Source::Add, add_start, len});
const std::size_t right_len = target.len - inner;
if (right_len > 0) {
repl.push_back(Piece{target.src, target.start + inner, right_len});
}
// Replace target with repl
pieces_.erase(pieces_.begin() + static_cast<std::ptrdiff_t>(idx));
pieces_.insert(pieces_.begin() + static_cast<std::ptrdiff_t>(idx), repl.begin(), repl.end());
total_size_ += len;
dirty_ = true;
InvalidateLineIndex();
// Try coalescing around the inserted position (the inserted piece is at idx + (inner>0 ? 1 : 0))
std::size_t ins_index = idx + (inner > 0 ? 1 : 0);
coalesceNeighbors(ins_index);
}
void
PieceTable::Delete(std::size_t byte_offset, std::size_t len)
{
if (len == 0)
return;
if (byte_offset >= total_size_)
return;
if (byte_offset + len > total_size_)
len = total_size_ - byte_offset;
auto [idx, inner] = locate(byte_offset);
std::size_t remaining = len;
while (remaining > 0 && idx < pieces_.size()) {
Piece &pc = pieces_[idx];
std::size_t available = pc.len - inner; // bytes we can remove from this piece starting at inner
std::size_t take = std::min(available, remaining);
// Compute lengths for left and right remnants
std::size_t left_len = inner;
std::size_t right_len = pc.len - inner - take;
Source src = pc.src;
std::size_t start = pc.start;
// Replace current piece with up to two remnants
if (left_len > 0 && right_len > 0) {
pc.len = left_len; // keep left in place
Piece right{src, start + inner + take, right_len};
pieces_.insert(pieces_.begin() + static_cast<std::ptrdiff_t>(idx + 1), right);
idx += 1; // move to right for next iteration decision
} else if (left_len > 0) {
pc.len = left_len;
// no insertion; idx now points to left; move to next piece
} else if (right_len > 0) {
pc.start = start + inner + take;
pc.len = right_len;
} else {
// entire piece removed
pieces_.erase(pieces_.begin() + static_cast<std::ptrdiff_t>(idx));
// stay at same idx for next piece
inner = 0;
remaining -= take;
continue;
}
// After modifying current idx, next deletion continues at beginning of the next logical region
inner = 0;
remaining -= take;
if (remaining == 0)
break;
// Move to next piece
idx += 1;
}
total_size_ -= len;
dirty_ = true;
InvalidateLineIndex();
if (idx < pieces_.size())
coalesceNeighbors(idx);
if (idx > 0)
coalesceNeighbors(idx - 1);
}
std::size_t
PieceTable::LineCount() const
{
RebuildLineIndex();
return line_index_.empty() ? 0 : line_index_.size();
}
std::pair<std::size_t, std::size_t>
PieceTable::GetLineRange(std::size_t line_num) const
{
RebuildLineIndex();
if (line_index_.empty())
return {0, 0};
if (line_num >= line_index_.size())
return {0, 0};
std::size_t start = line_index_[line_num];
std::size_t end = (line_num + 1 < line_index_.size()) ? line_index_[line_num + 1] : total_size_;
return {start, end};
}
std::string
PieceTable::GetLine(std::size_t line_num) const
{
auto [start, end] = GetLineRange(line_num);
if (end < start)
return std::string();
// Trim trailing '\n'
if (end > start) {
// To check last char, we can get it via GetRange of len 1 at end-1 without materializing whole
std::string last = GetRange(end - 1, 1);
if (!last.empty() && last[0] == '\n') {
end -= 1;
}
}
return GetRange(start, end - start);
}
std::pair<std::size_t, std::size_t>
PieceTable::ByteOffsetToLineCol(std::size_t byte_offset) const
{
if (byte_offset > total_size_)
byte_offset = total_size_;
RebuildLineIndex();
if (line_index_.empty())
return {0, 0};
auto it = std::upper_bound(line_index_.begin(), line_index_.end(), byte_offset);
std::size_t row = (it == line_index_.begin()) ? 0 : static_cast<std::size_t>((it - line_index_.begin()) - 1);
std::size_t col = byte_offset - line_index_[row];
return {row, col};
}
std::size_t
PieceTable::LineColToByteOffset(std::size_t row, std::size_t col) const
{
RebuildLineIndex();
if (line_index_.empty())
return 0;
if (row >= line_index_.size())
return total_size_;
std::size_t start = line_index_[row];
std::size_t end = (row + 1 < line_index_.size()) ? line_index_[row + 1] : total_size_;
// Clamp col to line length excluding trailing newline
if (end > start) {
std::string last = GetRange(end - 1, 1);
if (!last.empty() && last[0] == '\n') {
end -= 1;
}
}
std::size_t target = start + std::min(col, end - start);
return target;
}
std::string
PieceTable::GetRange(std::size_t byte_offset, std::size_t len) const
{
if (byte_offset >= total_size_ || len == 0)
return std::string();
if (byte_offset + len > total_size_)
len = total_size_ - byte_offset;
materialize();
return materialized_.substr(byte_offset, len);
}
std::size_t
PieceTable::Find(const std::string &needle, std::size_t start) const
{
if (needle.empty())
return start <= total_size_ ? start : std::numeric_limits<std::size_t>::max();
if (start > total_size_)
return std::numeric_limits<std::size_t>::max();
materialize();
auto pos = materialized_.find(needle, start);
if (pos == std::string::npos)
return std::numeric_limits<std::size_t>::max();
return pos;
}