2018-01-17 00:43:12 +00:00
|
|
|
## Recursion
|
|
|
|
|
|
|
|
Recursive definitions require that the recursive function isn't the first
|
|
|
|
clause, ex:
|
|
|
|
|
|
|
|
```
|
|
|
|
is_digesting(X,Y) :- just_ate(X,Y).
|
|
|
|
is_digesting(X,Y) :-
|
|
|
|
just_ate(X,Z),
|
|
|
|
is_digesting(Z,Y).
|
|
|
|
```
|
|
|
|
|
|
|
|
Recursive definition require a base ("escape") clause in addition to the
|
|
|
|
recursive clause.
|
|
|
|
|
|
|
|
### Rule ordering, goal ordering, and termination
|
|
|
|
|
|
|
|
Underlying vision for Prolog (and logic programming in general): the programmer
|
|
|
|
should be able to describe problems, and the computer derives the solution. The
|
|
|
|
programmer builds a knowledge base, then asks question of the computer.
|
|
|
|
|
|
|
|
Prolog's search order:
|
|
|
|
|
|
|
|
1. KB from top to bottom
|
|
|
|
2. Clauses from left to right
|
|
|
|
3. Backtracks on bad choices
|
|
|
|
|
|
|
|
This is somewhat of a procedural approach to declarative programming which may
|
|
|
|
affect the answer. Compare `descend1` with `descend2`:
|
|
|
|
|
|
|
|
```
|
|
|
|
child(anne,bridget).
|
|
|
|
child(bridget,caroline).
|
|
|
|
child(caroline,donna).
|
|
|
|
child(donna,emily).
|
|
|
|
|
|
|
|
descend1(X,Y) :- child(X,Y).
|
|
|
|
descend1(X,Y) :- child(X,Z),
|
|
|
|
descend1(Z,Y).
|
|
|
|
|
|
|
|
descend2(X,Y) :- descend2(Z,Y),
|
|
|
|
child(X,Z).
|
|
|
|
|
|
|
|
descend2(X,Y) :- child(X,Y).
|
|
|
|
```
|
|
|
|
|
|
|
|
Supposedly these give different answers, but `swipl` exploded on the latter...
|
|
|
|
and continuing reading, that's the point --- a warning to avoid left-recursive
|
|
|
|
rules.
|
|
|
|
|
|
|
|
The takeaway is that you can get the overall idea of how to write the program
|
|
|
|
by approaching the problem declaratively. Sensible goal orderings ensure
|
|
|
|
program / query termination: place the recursive definition last.
|
|
|
|
|
|
|
|
### Exercises
|
|
|
|
|
|
|
|
#### Exercise 3.1
|
|
|
|
|
|
|
|
In the text, we discussed the predicate
|
|
|
|
|
|
|
|
```
|
|
|
|
descend(X,Y) :- child(X,Y).
|
|
|
|
descend(X,Y) :- child(X,Z),
|
|
|
|
descend(Z,Y).
|
|
|
|
```
|
|
|
|
|
|
|
|
Suppose we reformulated this predicate as follows:
|
|
|
|
|
|
|
|
```
|
|
|
|
descend(X,Y) :- child(X,Y).
|
|
|
|
descend(X,Y) :- descend(X,Z),
|
|
|
|
descend(Z,Y).
|
|
|
|
```
|
|
|
|
|
|
|
|
Would this be problematic?
|
|
|
|
|
|
|
|
**A**: yes: there's no termination clause. See `descend3` in `descend.pl`.
|
|
|
|
|
|
|
|
#### Exercise 3.2
|
|
|
|
|
|
|
|
Do you know these wooden Russian dolls (Matryoshka dolls) where the smaller
|
|
|
|
ones are contained in bigger ones?
|
|
|
|
|
|
|
|
Ex katarina(olga(natasha(irina))).
|
|
|
|
|
|
|
|
First, write a knowledge base using the predicate `directlyIn/2` which encodes
|
|
|
|
which doll is directly contained in which other doll. Then, define a recursive
|
|
|
|
predicate `in/2`, that tells us which doll is (directly or indirectly)
|
|
|
|
contained in which other dolls. For example, the query `in(katarina,natasha)`
|
|
|
|
should evaluate to true, while `in(olga, katarina)` should fail.
|
|
|
|
|
|
|
|
```
|
|
|
|
directlyIn(natasha, irina).
|
|
|
|
directlyIn(olga, natasha).
|
|
|
|
directlyIn(katarina, olga).
|
|
|
|
|
|
|
|
in(X, Y) :- directlyIn(X, Y).
|
|
|
|
in(X, Y) :- directlyIn(X, Z),
|
|
|
|
in(Z, Y).
|
|
|
|
```
|
|
|
|
|
|
|
|
#### Exercise 3.3
|
|
|
|
|
|
|
|
We have the following knowledge base:
|
|
|
|
|
|
|
|
```
|
|
|
|
directTrain(saarbruecken,dudweiler).
|
|
|
|
directTrain(forbach,saarbruecken).
|
|
|
|
directTrain(freyming,forbach).
|
|
|
|
directTrain(stAvold,freyming).
|
|
|
|
directTrain(fahlquemont,stAvold).
|
|
|
|
directTrain(metz,fahlquemont).
|
|
|
|
directTrain(nancy,metz).
|
|
|
|
```
|
|
|
|
|
|
|
|
That is, this knowledge base holds facts about towns it is possible to travel
|
|
|
|
between by taking a direct train. But of course, we can travel further by
|
|
|
|
chaining together direct train journeys. Write a recursive predicate
|
|
|
|
`travelFromTo/2` that tells us when we can travel by train between two towns.
|
|
|
|
For example, when given the query `travelFromTo(nancy,saarbruecken)` it should
|
|
|
|
reply yes.
|
|
|
|
|
|
|
|
```
|
|
|
|
travelFromTo(X, Y) :- directTrain(X, Y).
|
|
|
|
travelFromTo(X, Y) :- directTrain(X, Z),
|
|
|
|
travelFromTo(Z, Y).
|
|
|
|
```
|
|
|
|
|
|
|
|
#### Exercise 3.4
|
|
|
|
|
|
|
|
Define a predicate `greater_than/2` that takes two numerals in the notation
|
|
|
|
that we introduced in the text (that is, `0`, `succ(0)`, `succ(succ(0))`, and
|
|
|
|
so on) as arguments and decides whether the first one is greater than the
|
|
|
|
second one. For example:
|
|
|
|
|
|
|
|
```
|
|
|
|
?- greater_than(succ(succ(succ(0))),succ(0)).
|
|
|
|
yes
|
|
|
|
?- greater_than(succ(succ(0)),succ(succ(succ(0)))).
|
|
|
|
no
|
|
|
|
```
|
|
|
|
|
2018-01-17 19:16:30 +00:00
|
|
|
Answer (in `succ.pl`):
|
|
|
|
|
|
|
|
```
|
|
|
|
greater_than(succ(succ(X)), succ(0)).
|
|
|
|
greater_than(succ(X), succ(Y)) :-
|
|
|
|
greater_than(X, Y).
|
|
|
|
```
|
|
|
|
|
2018-01-17 00:43:12 +00:00
|
|
|
#### Exercise 3.5
|
|
|
|
|
|
|
|
Binary trees are trees where all internal nodes have exactly two children. The
|
|
|
|
smallest binary trees consist of only one leaf node. We will represent leaf
|
|
|
|
nodes as `leaf(Label)`. For instance, `leaf(3)` and `leaf(7)` are leaf nodes,
|
|
|
|
and therefore small binary trees. Given two binary trees B1 and B2 we can
|
|
|
|
combine them into one binary tree using the functor `tree/2` as follows:
|
|
|
|
`tree(B1,B2)`. So, from the leaves `leaf(1)` and `leaf(2)` we can build the
|
|
|
|
binary tree `tree(leaf(1),leaf(2))` . And from the binary trees
|
|
|
|
`tree(leaf(1),leaf(2))` and `leaf(4)` we can build the binary tree
|
|
|
|
`tree(tree(leaf(1), leaf(2)),leaf(4))`.
|
|
|
|
|
|
|
|
Now, define a predicate `swap/2`, which produces the mirror image of the binary
|
|
|
|
tree that is its first argument. For example:
|
|
|
|
|
|
|
|
```
|
|
|
|
?- swap(tree(tree(leaf(1), leaf(2)), leaf(4)),T).
|
|
|
|
T = tree(leaf(4), tree(leaf(2), leaf(1))).
|
|
|
|
yes
|
2018-01-17 19:16:30 +00:00
|
|
|
```
|
|
|
|
|
|
|
|
This one took a lot of thinking, but the solution is in `tree.pl`.
|