sandbox/sample.py

48 lines
1.4 KiB
Python
Raw Normal View History

2018-06-01 07:15:10 +00:00
import base64
import itertools
import json
import kb
import pickle
import random
FACTS = """
gANdcQAoWAIAAABpc3EBWAgAAABhaXJsaW5lcnECWAUAAABGbHllcnEDh3EEaAFYBwAAAG9ha2xh
bmRxBVgHAAAAQWlycG9ydHEGh3EHaAFoBVgEAAAAQ2l0eXEIh3EJaAFYBgAAAGRlbnZlcnEKaAaH
cQtoAWgKaAiHcQxoAVgGAAAAY2JyNjAwcQ1YBgAAAERyaXZlcnEOh3EPaAFYBwAAAHRyb29wZXJx
EGgOh3ERWAIAAABhdHESaAJoCodxE2gSaA1oBYdxFGUu
"""
def load():
facts = base64.decodebytes(FACTS.encode('ascii'))
facts = pickle.loads(facts)
skb = kb.KnowledgeBase()
for fact in facts:
skb.tell(fact)
return skb
def load_facts(corpus_path='data/corpus.json', is_count=1000000):
facts = set()
corpus = json.loads(open(corpus_path).read())
if 'nouns' in corpus and 'adjectives' in corpus:
perms = list(itertools.product(corpus['nouns'],
corpus['adjectives']))
if len(perms) < is_count:
is_count = len(perms)-1;
pool = random.choices(perms, k=is_count)
for noun, adjective in pool:
facts.add(('is', noun, adjective))
if 'cities' in corpus:
for city in corpus['cities']:
facts.add(('is', city, 'City'))
return facts
def generate_tail_number():
letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
tailno = 'N' + str(random.randint(10, 99))
tailno += random.choice(letters)
tailno += random.choice(letters)
return tailno