364 lines
7.7 KiB
C++
364 lines
7.7 KiB
C++
#ifndef __WRMATH_GEOM_VECTOR_H
|
|
#define __WRMATH_GEOM_VECTOR_H
|
|
|
|
|
|
#include <array>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <initializer_list>
|
|
#include <ostream>
|
|
#include <iostream>
|
|
|
|
#include <wrmath/util/math.h>
|
|
|
|
|
|
namespace wr {
|
|
namespace geom {
|
|
|
|
/**
|
|
* Vector provides a standard interface for dimensionless fixed-size
|
|
* vectors. Once instantiated, they cannot be modified. Note that while
|
|
* the type is generic, it's intended to be used with floating-point
|
|
* types. They can be indexed like arrays, and they contain an epsilon
|
|
* value that defines a tolerance for equality.
|
|
*/
|
|
template <typename T, size_t N>
|
|
class Vector {
|
|
public:
|
|
/**
|
|
* The default constructor creates a zero vector for a given
|
|
* type and size.
|
|
*/
|
|
Vector() { wr::util::DefaultEpsilon(this->epsilon); }
|
|
|
|
/**
|
|
* If given an initializer_list, the vector is created with
|
|
* those values. There must be exactly N elements in the list.
|
|
* @param ilst
|
|
*/
|
|
Vector(std::initializer_list<T> ilst)
|
|
{
|
|
assert(ilst.size() == N);
|
|
|
|
wr::util::DefaultEpsilon(this->epsilon);
|
|
std::copy(ilst.begin(), ilst.end(), this->arr.begin());
|
|
}
|
|
|
|
|
|
/**
|
|
* Magnitude computes the length of the vector.
|
|
* @return The length of the vector.
|
|
*/
|
|
T magnitude() const {
|
|
T result = 0;
|
|
|
|
for (size_t i = 0; i < N; i++) {
|
|
result += (this->arr[i] * this->arr[i]);
|
|
}
|
|
return std::sqrt(result);
|
|
};
|
|
|
|
|
|
/**
|
|
* Set the tolerance for equality checks. At a minimum, this allows
|
|
* for systemic errors in floating math arithmetic.
|
|
*
|
|
* @param eps is the maximum difference between this vector and
|
|
* another.
|
|
*/
|
|
void
|
|
setEpsilon(T eps)
|
|
{
|
|
this->epsilon = eps;
|
|
}
|
|
|
|
|
|
/**
|
|
* Determine whether this is a zero vector.
|
|
* @return true if the vector is zero.
|
|
*/
|
|
bool
|
|
isZero() const
|
|
{
|
|
for (size_t i = 0; i < N; i++) {
|
|
if (!wr::util::WithinTolerance(this->arr[i], (T)0.0, this->epsilon)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/**
|
|
* Obtain the unit vector for this vector.
|
|
* @return The unit vector
|
|
*/
|
|
Vector
|
|
unitVector() const
|
|
{
|
|
return *this / this->magnitude();
|
|
}
|
|
|
|
|
|
/**
|
|
* Determine if this is a unit vector, e.g. if its length is 1.
|
|
* @return true if the vector is a unit vector.
|
|
*/
|
|
bool
|
|
isUnitVector() const
|
|
{
|
|
return wr::util::WithinTolerance(this->magnitude(), (T)1.0, this->epsilon);
|
|
}
|
|
|
|
|
|
/**
|
|
* Compute the angle between two other vectors.
|
|
* @param other Another vector.
|
|
* @return The angle in radians between the two vectors.
|
|
*/
|
|
T
|
|
angle(const Vector<T, N> &other) const
|
|
{
|
|
Vector<T, N> unitA = this->unitVector();
|
|
Vector<T, N> unitB = other.unitVector();
|
|
|
|
// Can't compute angles with a zero vector.
|
|
assert(!this->isZero());
|
|
assert(!other.isZero());
|
|
return std::acos(unitA * unitB);
|
|
}
|
|
|
|
|
|
/**
|
|
* Determine whether two vectors are parallel.
|
|
* @param other Another vector
|
|
* @return True if the angle between the vectors is zero.
|
|
*/
|
|
bool
|
|
isParallel(const Vector<T, N> &other) const
|
|
{
|
|
if (this->isZero() || other.isZero()) {
|
|
return true;
|
|
}
|
|
|
|
T angle = this->angle(other);
|
|
if (wr::util::WithinTolerance(angle, (T)0.0, this->epsilon)) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/**
|
|
* Determine if two vectors are orthogonal or perpendicular to each
|
|
* other.
|
|
* @param other Another vector
|
|
* @return True if the two vectors are orthogonal.
|
|
*/
|
|
bool
|
|
isOrthogonal(const Vector<T, N> &other) const
|
|
{
|
|
if (this->isZero() || other.isZero()) {
|
|
return true;
|
|
}
|
|
|
|
return wr::util::WithinTolerance(*this * other, (T)0.0, this->epsilon);
|
|
}
|
|
|
|
|
|
/**
|
|
* Project this vector onto some basis vector.
|
|
* @param basis The basis vector to be projected onto.
|
|
* @return A vector that is the projection of this onto the basis
|
|
* vector.
|
|
*/
|
|
Vector
|
|
projectParallel(const Vector<T, N> &basis) const
|
|
{
|
|
Vector<T, N> unit_basis = basis.unitVector();
|
|
|
|
return unit_basis * (*this * unit_basis);
|
|
}
|
|
|
|
|
|
/**
|
|
* Project this vector perpendicularly onto some basis vector.
|
|
* This is also called the rejection of the vector.
|
|
* @param basis The basis vector to be projected onto.
|
|
* @return A vector that is the orthogonal projection of this onto
|
|
* the basis vector.
|
|
*/
|
|
Vector
|
|
projectOrthogonal(const Vector<T, N> &basis)
|
|
{
|
|
Vector<T, N> spar = this->projectParallel(basis);
|
|
return *this - spar;
|
|
}
|
|
|
|
|
|
/**
|
|
* Perform vector addition with another vector.
|
|
* @param other The vector to be added.
|
|
* @return A new vector that is the result of adding this and the
|
|
* other vector.
|
|
*/
|
|
Vector operator+(const Vector<T, N> &other) const {
|
|
Vector<T, N> vec;
|
|
|
|
for (size_t i = 0; i < N; i++) {
|
|
vec.arr[i] = this->arr[i] + other.arr[i];
|
|
}
|
|
|
|
return vec;
|
|
}
|
|
|
|
|
|
/**
|
|
* Perform vector subtraction with another vector.
|
|
* @param other The vector to be subtracted from this vector.
|
|
* @return A new vector that is the result of subtracting the
|
|
* other vector from this one.
|
|
*/
|
|
Vector operator-(const Vector<T, N> &other) const {
|
|
Vector<T, N> vec;
|
|
|
|
for (size_t i = 0; i < N; i++) {
|
|
vec.arr[i] = this->arr[i] - other.arr[i];
|
|
}
|
|
|
|
return vec;
|
|
}
|
|
|
|
|
|
/**
|
|
* Perform scalar multiplication of this vector by some scale factor.
|
|
* @param k The scaling value.
|
|
* @return A new vector that is this vector scaled by k.
|
|
*/
|
|
Vector operator*(const T k) const {
|
|
Vector<T, N> vec;
|
|
|
|
for (size_t i = 0; i < N; i++) {
|
|
vec.arr[i] = this->arr[i] * k;
|
|
}
|
|
|
|
return vec;
|
|
}
|
|
|
|
|
|
/**
|
|
* Perform scalar division of this vector by some scale factor.
|
|
* @param k The scaling value
|
|
* @return A new vector that is this vector scaled by 1/k.
|
|
*/
|
|
Vector operator/(const T k) const {
|
|
Vector<T, N> vec;
|
|
|
|
for (size_t i = 0; i < N; i++) {
|
|
vec.arr[i] = this->arr[i] / k;
|
|
}
|
|
|
|
return vec;
|
|
}
|
|
|
|
|
|
/**
|
|
* Compute the dot product between two vectors.
|
|
* @param other The other vector.
|
|
* @return A scalar value that is the dot product of the two vectors.
|
|
*/
|
|
T operator*(const Vector<T, N> &other) const {
|
|
T result = 0;
|
|
|
|
for (size_t i = 0; i < N; i++) {
|
|
result += (this->arr[i] * other.arr[i]);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/**
|
|
* Compare two vectors for equality.
|
|
* @param other The other vector.
|
|
* @return Return true if all the components of both vectors are
|
|
* within the tolerance value.
|
|
*/
|
|
bool operator==(const Vector<T, N> &other) const {
|
|
for (size_t i = 0; i<N; i++) {
|
|
if (!wr::util::WithinTolerance(this->arr[i], other.arr[i], this->epsilon)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/**
|
|
* Compare two vectors for inequality.
|
|
* @param other The other vector.
|
|
* @return Return true if any of the components of both vectors are
|
|
* not within the tolerance value.
|
|
*/
|
|
bool operator!=(const Vector<T, N> &other) const {
|
|
return !(*this == other);
|
|
}
|
|
|
|
|
|
/**
|
|
* Support array indexing into vector.
|
|
* @param i The component index.
|
|
* @return The value of the vector component at i.
|
|
*/
|
|
T operator[](size_t i) const {
|
|
return this->arr[i];
|
|
}
|
|
|
|
|
|
/**
|
|
* Support outputting vectors in the form "<i, j, ...>".
|
|
* @param outs An output stream.
|
|
* @param vec The vector to be formatted.
|
|
* @return The output stream.
|
|
*/
|
|
friend std::ostream& operator<<(std::ostream& outs, const Vector<T, N>& vec) {
|
|
outs << "<";
|
|
for (size_t i = 0; i < N; i++) {
|
|
outs << vec.arr[i];
|
|
if (i < (N-1)) {
|
|
outs << ", ";
|
|
}
|
|
}
|
|
outs << ">";
|
|
return outs;
|
|
}
|
|
|
|
private:
|
|
static const size_t dim = N;
|
|
T epsilon;
|
|
std::array<T, N> arr;
|
|
};
|
|
|
|
|
|
/**
|
|
* A number of shorthand aliases for vectors are provided. They follow
|
|
* the form of VectorNt, where N is the dimension and t is the type.
|
|
* For example, a 2D float vector is Vector2f.
|
|
*/
|
|
|
|
typedef Vector<float, 2> Vector2f;
|
|
typedef Vector<float, 3> Vector3f;
|
|
typedef Vector<float, 4> Vector4f;
|
|
|
|
typedef Vector<double, 2> Vector2d;
|
|
typedef Vector<double, 3> Vector3d;
|
|
typedef Vector<double, 4> Vector4d;
|
|
|
|
|
|
} // namespace geom
|
|
} // namespace wr
|
|
|
|
|
|
#endif // __WRMATH_GEOM_VECTOR_H
|