wrmath/include/wrmath/geom/vector.h

364 lines
7.7 KiB
C++

#ifndef __WRMATH_GEOM_VECTOR_H
#define __WRMATH_GEOM_VECTOR_H
#include <array>
#include <cassert>
#include <cmath>
#include <initializer_list>
#include <ostream>
#include <iostream>
#include <wrmath/util/math.h>
namespace wr {
namespace geom {
/**
* Vector provides a standard interface for dimensionless fixed-size
* vectors. Once instantiated, they cannot be modified. Note that while
* the type is generic, it's intended to be used with floating-point
* types. They can be indexed like arrays, and they contain an epsilon
* value that defines a tolerance for equality.
*/
template <typename T, size_t N>
class Vector {
public:
/**
* The default constructor creates a zero vector for a given
* type and size.
*/
Vector() { wr::util::DefaultEpsilon(this->epsilon); }
/**
* If given an initializer_list, the vector is created with
* those values. There must be exactly N elements in the list.
* @param ilst
*/
Vector(std::initializer_list<T> ilst)
{
assert(ilst.size() == N);
wr::util::DefaultEpsilon(this->epsilon);
std::copy(ilst.begin(), ilst.end(), this->arr.begin());
}
/**
* Magnitude computes the length of the vector.
* @return The length of the vector.
*/
T magnitude() const {
T result = 0;
for (size_t i = 0; i < N; i++) {
result += (this->arr[i] * this->arr[i]);
}
return std::sqrt(result);
};
/**
* Set the tolerance for equality checks. At a minimum, this allows
* for systemic errors in floating math arithmetic.
*
* @param eps is the maximum difference between this vector and
* another.
*/
void
setEpsilon(T eps)
{
this->epsilon = eps;
}
/**
* Determine whether this is a zero vector.
* @return true if the vector is zero.
*/
bool
isZero() const
{
for (size_t i = 0; i < N; i++) {
if (!wr::util::WithinTolerance(this->arr[i], (T)0.0, this->epsilon)) {
return false;
}
}
return true;
}
/**
* Obtain the unit vector for this vector.
* @return The unit vector
*/
Vector
unitVector() const
{
return *this / this->magnitude();
}
/**
* Determine if this is a unit vector, e.g. if its length is 1.
* @return true if the vector is a unit vector.
*/
bool
isUnitVector() const
{
return wr::util::WithinTolerance(this->magnitude(), (T)1.0, this->epsilon);
}
/**
* Compute the angle between two other vectors.
* @param other Another vector.
* @return The angle in radians between the two vectors.
*/
T
angle(const Vector<T, N> &other) const
{
Vector<T, N> unitA = this->unitVector();
Vector<T, N> unitB = other.unitVector();
// Can't compute angles with a zero vector.
assert(!this->isZero());
assert(!other.isZero());
return std::acos(unitA * unitB);
}
/**
* Determine whether two vectors are parallel.
* @param other Another vector
* @return True if the angle between the vectors is zero.
*/
bool
isParallel(const Vector<T, N> &other) const
{
if (this->isZero() || other.isZero()) {
return true;
}
T angle = this->angle(other);
if (wr::util::WithinTolerance(angle, (T)0.0, this->epsilon)) {
return true;
}
return false;
}
/**
* Determine if two vectors are orthogonal or perpendicular to each
* other.
* @param other Another vector
* @return True if the two vectors are orthogonal.
*/
bool
isOrthogonal(const Vector<T, N> &other) const
{
if (this->isZero() || other.isZero()) {
return true;
}
return wr::util::WithinTolerance(*this * other, (T)0.0, this->epsilon);
}
/**
* Project this vector onto some basis vector.
* @param basis The basis vector to be projected onto.
* @return A vector that is the projection of this onto the basis
* vector.
*/
Vector
projectParallel(const Vector<T, N> &basis) const
{
Vector<T, N> unit_basis = basis.unitVector();
return unit_basis * (*this * unit_basis);
}
/**
* Project this vector perpendicularly onto some basis vector.
* This is also called the rejection of the vector.
* @param basis The basis vector to be projected onto.
* @return A vector that is the orthogonal projection of this onto
* the basis vector.
*/
Vector
projectOrthogonal(const Vector<T, N> &basis)
{
Vector<T, N> spar = this->projectParallel(basis);
return *this - spar;
}
/**
* Perform vector addition with another vector.
* @param other The vector to be added.
* @return A new vector that is the result of adding this and the
* other vector.
*/
Vector operator+(const Vector<T, N> &other) const {
Vector<T, N> vec;
for (size_t i = 0; i < N; i++) {
vec.arr[i] = this->arr[i] + other.arr[i];
}
return vec;
}
/**
* Perform vector subtraction with another vector.
* @param other The vector to be subtracted from this vector.
* @return A new vector that is the result of subtracting the
* other vector from this one.
*/
Vector operator-(const Vector<T, N> &other) const {
Vector<T, N> vec;
for (size_t i = 0; i < N; i++) {
vec.arr[i] = this->arr[i] - other.arr[i];
}
return vec;
}
/**
* Perform scalar multiplication of this vector by some scale factor.
* @param k The scaling value.
* @return A new vector that is this vector scaled by k.
*/
Vector operator*(const T k) const {
Vector<T, N> vec;
for (size_t i = 0; i < N; i++) {
vec.arr[i] = this->arr[i] * k;
}
return vec;
}
/**
* Perform scalar division of this vector by some scale factor.
* @param k The scaling value
* @return A new vector that is this vector scaled by 1/k.
*/
Vector operator/(const T k) const {
Vector<T, N> vec;
for (size_t i = 0; i < N; i++) {
vec.arr[i] = this->arr[i] / k;
}
return vec;
}
/**
* Compute the dot product between two vectors.
* @param other The other vector.
* @return A scalar value that is the dot product of the two vectors.
*/
T operator*(const Vector<T, N> &other) const {
T result = 0;
for (size_t i = 0; i < N; i++) {
result += (this->arr[i] * other.arr[i]);
}
return result;
}
/**
* Compare two vectors for equality.
* @param other The other vector.
* @return Return true if all the components of both vectors are
* within the tolerance value.
*/
bool operator==(const Vector<T, N> &other) const {
for (size_t i = 0; i<N; i++) {
if (!wr::util::WithinTolerance(this->arr[i], other.arr[i], this->epsilon)) {
return false;
}
}
return true;
}
/**
* Compare two vectors for inequality.
* @param other The other vector.
* @return Return true if any of the components of both vectors are
* not within the tolerance value.
*/
bool operator!=(const Vector<T, N> &other) const {
return !(*this == other);
}
/**
* Support array indexing into vector.
* @param i The component index.
* @return The value of the vector component at i.
*/
T operator[](size_t i) const {
return this->arr[i];
}
/**
* Support outputting vectors in the form "<i, j, ...>".
* @param outs An output stream.
* @param vec The vector to be formatted.
* @return The output stream.
*/
friend std::ostream& operator<<(std::ostream& outs, const Vector<T, N>& vec) {
outs << "<";
for (size_t i = 0; i < N; i++) {
outs << vec.arr[i];
if (i < (N-1)) {
outs << ", ";
}
}
outs << ">";
return outs;
}
private:
static const size_t dim = N;
T epsilon;
std::array<T, N> arr;
};
/**
* A number of shorthand aliases for vectors are provided. They follow
* the form of VectorNt, where N is the dimension and t is the type.
* For example, a 2D float vector is Vector2f.
*/
typedef Vector<float, 2> Vector2f;
typedef Vector<float, 3> Vector3f;
typedef Vector<float, 4> Vector4f;
typedef Vector<double, 2> Vector2d;
typedef Vector<double, 3> Vector3d;
typedef Vector<double, 4> Vector4d;
} // namespace geom
} // namespace wr
#endif // __WRMATH_GEOM_VECTOR_H