HamShield/src/HamShield.cpp

1843 lines
54 KiB
C++
Raw Normal View History

// HamShield library collection
// Based on Programming Manual rev. 2.0, 5/19/2011 (RM-MPU-6000A-00)
// 11/22/2013 by Morgan Redfield <redfieldm@gmail.com>
// 04/26/2015 various changes Casey Halverson <spaceneedle@gmail.com>
#include "Arduino.h"
#include "HamShield.h"
#include <avr/wdt.h>
#include <avr/pgmspace.h>
// #include <PCM.h>
/* don't change this regulatory value, use dangerMode() and safeMode() instead */
bool restrictions = true;
HamShield *HamShield::sHamShield = NULL;
/* channel lookup tables */
2015-07-06 03:19:16 +00:00
const uint32_t FRS[] PROGMEM = {0,462562,462587,462612,462637,462662,462687,462712,467562,467587,467612,467637,467662,467687,467712};
2015-07-06 03:19:16 +00:00
const uint32_t GMRS[] PROGMEM = {0,462550,462575,462600,462625,462650,462675,462700,462725};
2015-07-06 03:19:16 +00:00
const uint32_t MURS[] PROGMEM = {0,151820,151880,151940,154570,154600};
2015-07-06 03:19:16 +00:00
const uint32_t WX[] PROGMEM = {0,162550,162400,162475,162425,162450,162500,162525};
2016-12-19 19:40:44 +00:00
unsigned int morse_freq = 600;
2016-12-19 19:53:36 +00:00
unsigned int morse_dot_millis = 100;
2016-12-19 19:40:44 +00:00
/* morse code lookup table */
// This is the Morse table in reverse binary format.
// It will occupy 108 bytes of memory (or program memory if defined)
2018-08-10 03:32:29 +00:00
#define MORSE_TABLE_LENGTH 54
#define MORSE_TABLE_PROGMEM
#ifndef MORSE_TABLE_PROGMEM
const struct asciiMorse {
char ascii;
uint8_t itu;
} asciiMorse[MORSE_TABLE_LENGTH] = {
{ 'E', 0b00000010 }, // .
{ 'T', 0b00000011 }, // -
{ 'I', 0b00000100 }, // ..
{ 'N', 0b00000101 }, // -.
{ 'A', 0b00000110 }, // .-
{ 'M', 0b00000111 }, // --
{ 'S', 0b00001000 }, // ...
{ 'D', 0b00001001 }, // -..
{ 'R', 0b00001010 }, // .-.
{ 'G', 0b00001011 }, // --.
{ 'U', 0b00001100 }, // ..-
{ 'K', 0b00001101 }, // -.-
{ 'W', 0b00001110 }, // .--
{ 'O', 0b00001111 }, // ---
{ 'H', 0b00010000 }, // ....
{ 'B', 0b00010001 }, // -...
{ 'L', 0b00010010 }, // .-..
{ 'Z', 0b00010011 }, // --..
{ 'F', 0b00010100 }, // ..-.
{ 'C', 0b00010101 }, // -.-.
{ 'P', 0b00010110 }, // .--.
{ 'V', 0b00011000 }, // ...-
{ 'X', 0b00011001 }, // -..-
{ 'Q', 0b00011011 }, // --.-
{ 'Y', 0b00011101 }, // -.--
{ 'J', 0b00011110 }, // .---
{ '5', 0b00100000 }, // .....
{ '6', 0b00100001 }, // -....
{ '&', 0b00100010 }, // .-...
{ '7', 0b00100011 }, // --...
{ '8', 0b00100111 }, // ---..
{ '/', 0b00101001 }, // -..-.
{ '+', 0b00101010 }, // .-.-.
{ '(', 0b00101101 }, // -.--.
{ '9', 0b00101111 }, // ----.
{ '4', 0b00110000 }, // ....-
{ '=', 0b00110001 }, // -...-
{ '3', 0b00111000 }, // ...--
{ '2', 0b00111100 }, // ..---
{ '1', 0b00111110 }, // .----
{ '0', 0b00111111 }, // -----
{ ':', 0b01000111 }, // ---...
{ '?', 0b01001100 }, // ..--..
{ '"', 0b01010010 }, // .-..-.
{ ';', 0b01010101 }, // -.-.-.
{ '@', 0b01010110 }, // .--.-.
{ '\047', 0b01011110 }, // (') .----.
{ '-', 0b01100001 }, // -....-
{ '.', 0b01101010 }, // .-.-.-
{ '_', 0b01101100 }, // ..--.-
{ ')', 0b01101101 }, // -.--.-
{ ',', 0b01110011 }, // --..--
{ '!', 0b01110101 }, // -.-.--
{ '$', 0b11001000 } // ...-..-
};
#else
// This is a program memory variant, using 16 bit words for storage instead.
const uint16_t asciiMorseProgmem[] PROGMEM = {
0x4502, 0x5403, 0x4904, 0x4E05, 0x4106, 0x4D07, 0x5308, 0x4409, 0x520A,
0x470B, 0x550C, 0x4B0D, 0x570E, 0x4F0F, 0x4810, 0x4211, 0x4C12, 0x5A13,
0x4614, 0x4315, 0x5016, 0x5618, 0x5819, 0x511B, 0x591D, 0x4A1E, 0x3520,
0x3621, 0x2622, 0x3723, 0x3827, 0x2F29, 0x2B2A, 0x282D, 0x392F, 0x3430,
0x3D31, 0x3338, 0x323C, 0x313E, 0x303F, 0x3A47, 0x3F4C, 0x2252, 0x3B55,
0x4056, 0x275E, 0x2D61, 0x2E6A, 0x5F6C, 0x296D, 0x2C73, 0x2175, 0x24C8
};
#endif // MORSE_TABLE_PROGMEM
/* 2200 Hz -- This lookup table should be deprecated */
const unsigned char AFSK_mark[] PROGMEM = { 154, 249, 91, 11, 205, 216, 25, 68, 251, 146, 0, 147, 250, 68, 24, 218, 203, 13, 88, 254, 128, 1, 167, 242, 52, 37, 231, 186, 5, 108, 255, 108, 5, 186, 231, 37, 52, 242, 167, 1, 128, 254, 88, 13, 203, 218, 24, 69, 250, 147, 0, 147, 250, 69, 24, 218, 203, 13, 88, 255, 127, 2, 165, 245, 48 };
/* 1200 Hz -- This lookup table should be deprecated */
const unsigned char AFSK_space[] PROGMEM = { 140, 228, 250, 166, 53, 0, 53, 166, 249, 230, 128, 24, 7, 88, 203, 255, 203, 88, 7, 24, 128, 230, 249, 167, 53, 0, 53, 167, 249, 230, 128, 24, 6, 88, 202, 255, 202, 88, 6, 24, 127, 231, 249, 167, 52, 0, 52, 167, 248, 231, 127, 25, 6, 89, 202, 255, 202, 89, 6, 25, 127, 231, 248, 167, 53, 0, 54, 165, 251, 227, 133, 14};
/* Aux button variables */
volatile int ptt = false;
volatile long bouncer = 0;
/** Default constructor, uses default I2C address.
* @see A1846S_DEFAULT_ADDRESS
*/
HamShield::HamShield() {
2016-07-01 02:33:40 +00:00
devAddr = A1; // devAddr is the chip select pin used by the HamShield
sHamShield = this;
pinMode(devAddr, OUTPUT);
digitalWrite(devAddr, HIGH);
pinMode(CLK, OUTPUT);
digitalWrite(CLK, HIGH);
pinMode(DAT, OUTPUT);
digitalWrite(DAT, HIGH);
}
/** Specific address constructor.
2016-07-01 02:33:40 +00:00
* @param chip select pin for HamShield
* @see A1846S_DEFAULT_ADDRESS
* @see A1846S_ADDRESS_AD0_LOW
* @see A1846S_ADDRESS_AD0_HIGH
*/
2016-07-01 02:33:40 +00:00
HamShield::HamShield(uint8_t cs_pin) {
devAddr = cs_pin;
pinMode(devAddr, OUTPUT);
digitalWrite(devAddr, HIGH);
pinMode(CLK, OUTPUT);
digitalWrite(CLK, HIGH);
pinMode(DAT, OUTPUT);
digitalWrite(DAT, HIGH);
}
2017-01-15 19:31:22 +00:00
/** Power on and prepare for general usage.
*
*/
2015-11-23 16:54:10 +00:00
void HamShield::initialize() {
initialize(true);
2017-01-15 19:31:22 +00:00
}
/** Power on and prepare for general usage.
*
*/
void HamShield::initialize(bool narrowBand) {
// Note: these initial settings are for UHF 12.5kHz channel
// see the A1846S register table and initial settings for more info
uint16_t tx_data;
// reset all registers in A1846S
softReset();
//set up clock to ues 12-14MHz
setClkMode(1);
// set up GPIO voltage (want 3.3V)
tx_data = 0x03AC; // default is 0x32C
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x09, tx_data);
tx_data = 0x47E0; //0x43A0; // 0x7C20; //
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x0A, tx_data); // pga gain [10:6]
tx_data = 0xA100;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x13, tx_data);
tx_data = 0x5001;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x1F, tx_data); // GPIO7->VOX, GPIO0->CTC/DCS
tx_data = 0x0031;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x31, tx_data);
tx_data = 0x0AF2; //
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x33, tx_data); // agc number
tx_data = 0x067F; //0x0601; //0x470F;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x41, tx_data); // voice gain tx [6:0]
tx_data = 0x02FF; // using 0x04FF to avoid tx voice delay
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x44, tx_data); // tx gain [11:8]
tx_data = 0x7F2F;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x47, tx_data);
tx_data = 0x2C62;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x4F, tx_data);
tx_data = 0x0094;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x53, tx_data); // compressor update time (bits 6:0, 5.12ms per unit)
tx_data = 0x2A18;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x54, tx_data);
tx_data = 0x0081;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x55, tx_data);
tx_data = 0x0B22;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x56, tx_data); // sq detect time
tx_data = 0x1C00;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x57, tx_data);
tx_data = 0x800D;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x58, tx_data);
tx_data = 0x0EDD;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x5A, tx_data); // sq and noise detect times
tx_data = 0x3FFF;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x63, tx_data); // pre-emphasis bypass
// calibration
tx_data = 0x00A4;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x30, tx_data);
delay(100);
tx_data = 0x00A6;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x30, tx_data);
delay(100);
tx_data = 0x0006;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x30, tx_data);
delay(100);
// set band width
if (narrowBand) {
setupNarrowBand();
} else {
setupWideBand();
}
2017-01-15 19:31:22 +00:00
delay(100);
/*
2017-01-15 19:31:22 +00:00
// setup default values
frequency(446000);
//setVolume1(0xF);
//setVolume2(0xF);
setModeReceive();
setTxSourceMic();
setRfPower(0);
2017-01-15 19:31:22 +00:00
setSQLoThresh(80);
setSQOn();
*/
setDTMFIdleTime(50);
setDTMFTxTime(60);
setDTMFDetectTime(24);
2017-01-15 19:31:22 +00:00
}
/** Set up the AU1846 in Narrow Band mode (12.5kHz).
*/
void HamShield::setupNarrowBand() {
uint16_t tx_data;
// setup for 12.5kHz channel width
tx_data = 0x3D37;
HSwriteWord(devAddr, 0x11, tx_data);
tx_data = 0x0100;
HSwriteWord(devAddr, 0x12, tx_data);
tx_data = 0x1100;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x15, tx_data);
tx_data = 0x4495;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x32, tx_data); // agc target power [11:6]
tx_data = 0x2B8E;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x34, tx_data);
tx_data = 0x40C3;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x3A, tx_data); // modu_det_sel sq setting
tx_data = 0x0407;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x3C, tx_data); // pk_det_th sq setting [8:7]
tx_data = 0x28D0;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x3F, tx_data); // rssi3_th sq setting
tx_data = 0x203E;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x48, tx_data);
tx_data = 0x1BB7;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x60, tx_data);
tx_data = 0x0A10; // use 0x1425 if there's an LNA
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x62, tx_data);
tx_data = 0x2494;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x65, tx_data);
tx_data = 0xEB2E;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, 0x66, tx_data);
2017-01-15 19:31:22 +00:00
// AGC table
tx_data = 0x0001;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x7F, tx_data);
tx_data = 0x000C;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x05, tx_data);
tx_data = 0x020C;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x06, tx_data);
tx_data = 0x030C;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x07, tx_data);
tx_data = 0x0324;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x08, tx_data);
tx_data = 0x1344;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x09, tx_data);
tx_data = 0x3F44;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x0A, tx_data);
tx_data = 0x3F44;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x0B, tx_data);
tx_data = 0x3F44;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x0C, tx_data);
tx_data = 0x3F44;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x0D, tx_data);
tx_data = 0x3F44;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x0E, tx_data);
tx_data = 0x3F44;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x0F, tx_data);
tx_data = 0xE0ED;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x12, tx_data);
tx_data = 0xF2FE;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x13, tx_data);
tx_data = 0x0A16;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x14, tx_data);
tx_data = 0x2424;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x15, tx_data);
tx_data = 0x2424;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x16, tx_data);
tx_data = 0x2424;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x17, tx_data);
tx_data = 0x0000;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x7F, tx_data);
// end AGC table
2017-01-15 19:31:22 +00:00
}
/** Set up the AU1846 in Wide Band mode (25kHz).
*/
void HamShield::setupWideBand() {
uint16_t tx_data;
// setup for 25kHz channel width
tx_data = 0x3D37;
HSwriteWord(devAddr, 0x11, tx_data);
tx_data = 0x0100;
HSwriteWord(devAddr, 0x12, tx_data);
tx_data = 0x1F00;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x15, tx_data);
tx_data = 0x7564;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x32, tx_data); // agc target power [11:6]
tx_data = 0x2B8E;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x34, tx_data);
tx_data = 0x44C3;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x3A, tx_data); // modu_det_sel sq setting
tx_data = 0x1930;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x3C, tx_data); // pk_det_th sq setting [8:7]
tx_data = 0x29D2;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x3F, tx_data); // rssi3_th sq setting
tx_data = 0x21C0;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x48, tx_data);
tx_data = 0x101E;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x60, tx_data);
tx_data = 0x3767; // use 0x1425 if there's an LNA
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x62, tx_data);
tx_data = 0x248A;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x65, tx_data);
tx_data = 0xFFAE;
HSwriteWord(devAddr, 0x66, tx_data);
2017-01-15 19:31:22 +00:00
// AGC table
tx_data = 0x0001;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x7F, tx_data);
tx_data = 0x000C;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x05, tx_data);
tx_data = 0x0024;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x06, tx_data);
tx_data = 0x0214;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x07, tx_data);
tx_data = 0x0224;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x08, tx_data);
tx_data = 0x0314;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x09, tx_data);
tx_data = 0x0324;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x0A, tx_data);
tx_data = 0x0344;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x0B, tx_data);
tx_data = 0x0384;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x0C, tx_data);
tx_data = 0x1384;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x0D, tx_data);
tx_data = 0x1B84;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x0E, tx_data);
tx_data = 0x3F84;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x0F, tx_data);
tx_data = 0xE0EB;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x12, tx_data);
tx_data = 0xF2FE;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x13, tx_data);
tx_data = 0x0A16;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x14, tx_data);
tx_data = 0x2424;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x15, tx_data);
tx_data = 0x2424;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x16, tx_data);
tx_data = 0x2424;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x17, tx_data);
tx_data = 0x0000;
2017-01-15 19:31:22 +00:00
HSwriteWord(devAddr, 0x7F, tx_data);
// end AGC table
}
/** Verify the I2C connection.
* Make sure the device is connected and responds as expected.
* @return True if connection is valid, false otherwise
*/
bool HamShield::testConnection() {
2016-03-25 03:31:17 +00:00
HSreadWord(devAddr, 0x00, radio_i2c_buf);
2015-07-09 15:29:50 +00:00
return radio_i2c_buf[0] == 0x1846;
}
/** A1846S each register write is 24-bit long, including a
* r/nw bit, 7-bit register address , and 16-bit data (MSB
* is the first bit).
* R/W, A[6:0], D[15:0]
*
* Note (this shouldn't be necessary, since all ctl registers are below 0x7F)
* If register address is more than 7FH, first write 0x0001
* to 7FH, and then write value to the address subtracted by
* 80H. Finally write 0x0000 to 7FH
* Example: writing 85H register address is 0x001F .
* Move 7FH 0x0001{
}
* Move 05H 0x001F{
} 05H=85H-80H
* Move 7FH 0x0000{
}
*/
uint16_t HamShield::readCtlReg() {
2016-03-25 03:31:17 +00:00
HSreadWord(devAddr, A1846S_CTL_REG, radio_i2c_buf);
return radio_i2c_buf[0];
}
void HamShield::softReset() {
uint16_t tx_data = 0x1;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, A1846S_CTL_REG, tx_data);
delay(100); // Note: see A1846S setup info for timing guidelines
tx_data = 0x4;
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, A1846S_CTL_REG, tx_data);
}
void HamShield::setFrequency(uint32_t freq_khz) {
radio_frequency = (float) freq_khz;
uint32_t freq_raw = freq_khz << 4; // shift by 4 to multiply by 16 (was shift by 3 in old 1846 chip)
// turn off tx/rx
HSwriteBitsW(devAddr, A1846S_CTL_REG, 6, 2, 0);
// if we're using a 12MHz crystal and the frequency is
// 136.5M,409.5M and 455M, then we have to do special stuff
if (radio_frequency == 136500 ||
radio_frequency == 490500 ||
radio_frequency == 455000) {
// set up AU1846 for funky freq
HSwriteWord(devAddr, 0x05, 0x86D3);
} else {
// set up AU1846 for normal freq
HSwriteWord(devAddr, 0x05, 0x8763);
}
// send top 16 bits to A1846S_FREQ_HI_REG
uint16_t freq_half = (uint16_t) (0x3FFF & (freq_raw >> 16));
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, A1846S_FREQ_HI_REG, freq_half);
// send bottom 16 bits to A1846S_FREQ_LO_REG
freq_half = (uint16_t) (freq_raw & 0xFFFF);
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, A1846S_FREQ_LO_REG, freq_half);
if (rx_active) {
setRX(true);
} else if (tx_active) {
setTX(true);
}
}
uint32_t HamShield::getFrequency() {
return (uint32_t) radio_frequency;
}
float HamShield::getFrequency_float() {
return radio_frequency;
}
2015-11-23 16:54:10 +00:00
void HamShield::setTxBand2m() {
setGpioLow(4); // V1
setGpioHi(5); // V2
}
2015-11-23 16:54:10 +00:00
void HamShield::setTxBand1_2m() {
setGpioHi(4); // V1
setGpioLow(5); // V2
}
2015-11-23 16:54:10 +00:00
void HamShield::setTxBand70cm() {
//setGpioHi(4); // V1
//setGpioHi(5); // V2
uint16_t mode_len = 4;
uint16_t bit = 11;
2016-03-25 03:31:17 +00:00
HSwriteBitsW(devAddr, A1846S_GPIO_MODE_REG, bit, mode_len, 0xF);
}
// clk mode
// 12-14MHz: set to 1
// 24-28MHz: set to 0
void HamShield::setClkMode(bool LFClk){
// include upper bits as default values
2015-07-09 15:29:50 +00:00
uint16_t tx_data = 0x0FD1;
if (!LFClk) {
2015-07-09 15:29:50 +00:00
tx_data = 0x0FD0;
}
2016-03-25 03:31:17 +00:00
HSwriteWord(devAddr, A1846S_CLK_MODE_REG, tx_data);
}
bool HamShield::getClkMode(){
2016-03-25 03:31:17 +00:00
HSreadBitW(devAddr, A1846S_CLK_MODE_REG, A1846S_CLK_MODE_BIT, radio_i2c_buf);
return (radio_i2c_buf[0] != 0);
}
2015-07-09 15:29:50 +00:00
// TODO: create a 25kHz setup option as well as 12.5kHz (as is implemented now)
/*
// channel mode
// 11 - 25kHz channel
// 00 - 12.5kHz channel
// 10,01 - reserved
void HamShield::setChanMode(uint16_t mode){
2016-03-25 03:31:17 +00:00
HSwriteBitsW(devAddr, A1846S_CTL_REG, A1846S_CHAN_MODE_BIT, A1846S_CHAN_MODE_LENGTH, mode);
}
uint16_t HamShield::getChanMode(){
2016-03-25 03:31:17 +00:00
HSreadBitsW(devAddr, A1846S_CTL_REG, A1846S_CHAN_MODE_BIT, A1846S_CHAN_MODE_LENGTH, radio_i2c_buf);
return radio_i2c_buf[0];
}
2015-07-09 15:29:50 +00:00
*/
// choose tx or rx
void HamShield::setTX(bool on_noff){
// make sure RX is off
if (on_noff) {
tx_active = true;
rx_active = false;
setRX(false);
if((radio_frequency >= 134000) && (radio_frequency <= 174000)) {
setTxBand2m();
}
if((radio_frequency >= 200000) && (radio_frequency <= 260000)) {
setTxBand1_2m();
}
if((radio_frequency >= 400000) && (radio_frequency <= 520000)) {
setTxBand70cm();
}
// FOR HS03
//setGpioLow(5); // V2
//setGpioHi(4); // V1
delay(50); // delay required by AU1846
}
2016-03-25 03:31:17 +00:00
HSwriteBitW(devAddr, A1846S_CTL_REG, A1846S_TX_MODE_BIT, on_noff);
}
bool HamShield::getTX(){
2016-03-25 03:31:17 +00:00
HSreadBitW(devAddr, A1846S_CTL_REG, A1846S_TX_MODE_BIT, radio_i2c_buf);
return (radio_i2c_buf[0] != 0);
}
void HamShield::setRX(bool on_noff){
// make sure TX is off
if (on_noff) {
tx_active = false;
rx_active = true;
setTX(false);
// FOR HS03
//setGpioLow(4); // V1
//setGpioHi(5); // V2
setGpioLow(4); // V1
setGpioLow(5); // V2
delay(50); // delay required by AU1846
}
HSwriteBitW(devAddr, A1846S_CTL_REG, A1846S_RX_MODE_BIT, on_noff);
}
bool HamShield::getRX(){
2016-03-25 03:31:17 +00:00
HSreadBitW(devAddr, A1846S_CTL_REG, A1846S_RX_MODE_BIT, radio_i2c_buf);
return (radio_i2c_buf[0] != 0);
}
void HamShield::setModeTransmit(){
2015-07-09 15:29:50 +00:00
// check to see if we should allow them to do this
if(restrictions == true) {
2016-04-18 00:19:33 +00:00
if(((radio_frequency > 139999) & (radio_frequency < 148001)) ||
((radio_frequency > 218999) & (radio_frequency < 225001)) ||
((radio_frequency > 419999) & (radio_frequency < 450001)))
{ // we're good, so just drop down to the rest of this function
} else {
setRX(false);
return;
}
2016-04-18 00:19:33 +00:00
}
setTX(true);
}
void HamShield::setModeReceive(){
// turn on rx, turn off tx
setRX(true);
}
void HamShield::setModeOff(){
// turn off tx/rx
HSwriteBitsW(devAddr, A1846S_CTL_REG, 6, 2, 0);
// turn off amplifiers
setGpioLow(4); // V1
setGpioLow(5); // V2
2015-11-23 16:54:10 +00:00
tx_active = false;
rx_active = true;
//TODO: set pwr_dwn bit
2015-11-23 16:54:10 +00:00
}
// set tx source
2015-07-09 15:29:50 +00:00
// 000 - Nothing
// 001 - sine source from tone1
// 010 - sine source from tone2
// 011 - sine source from tone1 and tone2
// 100 - mic
void HamShield::setTxSource(uint16_t tx_source){
2016-03-25 03:31:17 +00:00
HSwriteBitsW(devAddr, A1846S_TX_VOICE_REG, A1846S_VOICE_SEL_BIT, A1846S_VOICE_SEL_LENGTH, tx_source);
}
void HamShield::setTxSourceMic(){
setTxSource(4);
}
2015-07-09 15:29:50 +00:00
void HamShield::setTxSourceTone1(){
setTxSource(1);
}
2015-07-09 15:29:50 +00:00
void HamShield::setTxSourceTone2(){
setTxSource(2);
}
2015-07-09 15:29:50 +00:00
void HamShield::setTxSourceTones(){
setTxSource(3);
}
2015-07-09 15:29:50 +00:00
void HamShield::setTxSourceNone(){
setTxSource(0);
2015-07-09 15:29:50 +00:00
}
uint16_t HamShield::getTxSource(){
2016-03-25 03:31:17 +00:00
HSreadBitsW(devAddr, A1846S_TX_VOICE_REG, A1846S_VOICE_SEL_BIT, A1846S_VOICE_SEL_LENGTH, radio_i2c_buf);
return radio_i2c_buf[0];
}
2015-07-09 15:29:50 +00:00
/*
// set PA_bias voltage
// 000000: 1.01V
// 000001:1.05V
// 000010:1.09V
// 000100: 1.18V
// 001000: 1.34V
// 010000: 1.68V
// 100000: 2.45V
// 1111111:3.13V
void HamShield::setPABiasVoltage(uint16_t voltage){
2016-03-25 03:31:17 +00:00
HSwriteBitsW(devAddr, A1846S_PABIAS_REG, A1846S_PABIAS_BIT, A1846S_PABIAS_LENGTH, voltage);
}
uint16_t HamShield::getPABiasVoltage(){
2016-03-25 03:31:17 +00:00
HSreadBitsW(devAddr, A1846S_PABIAS_REG, A1846S_PABIAS_BIT, A1846S_PABIAS_LENGTH, radio_i2c_buf);
return radio_i2c_buf[0];
}
2015-07-09 15:29:50 +00:00
*/
// Subaudio settings
// TX and RX code
// Ctcss/cdcss mode sel
2018-08-10 03:32:29 +00:00
// 00000= disable,
// 00001= det ctcss tone 1
// 00010= det cdcss
// 00100= det inverted ctcss
// 01000= det ctcss tone 2 (unused in HS right now)
// 10000= det phase shift
void HamShield::setCtcssCdcssMode(uint16_t mode){
2018-08-10 03:32:29 +00:00
HSwriteBitsW(devAddr, A1846S_TX_VOICE_REG, A1846S_CTDCSS_DTEN_BIT, A1846S_CTDCSS_DTEN_LEN, mode);
}
uint16_t HamShield::getCtcssCdcssMode(){
2018-08-10 03:32:29 +00:00
HSreadBitsW(devAddr, A1846S_TX_VOICE_REG, A1846S_CTDCSS_DTEN_BIT, A1846S_CTDCSS_DTEN_BIT, radio_i2c_buf);
return radio_i2c_buf[0];
}
2018-08-10 03:32:29 +00:00
void HamShield::setDetPhaseShift() {
setCtcssCdcssMode(0x10);
}
2018-08-10 03:32:29 +00:00
void HamShield::setDetInvertCdcss() {
setCtcssCdcssMode(0x4);
}
2018-08-10 03:32:29 +00:00
void HamShield::setDetCdcss() {
setCtcssCdcssMode(0x2);
}
2018-08-10 03:32:29 +00:00
void HamShield::setDetCtcss() {
setCtcssCdcssMode(0x1);
}
2018-08-10 03:32:29 +00:00
void HamShield::disableCtcssCdcss(){
setCtcssCdcssMode(0);
}
// Ctcss_sel
// 1 = ctcss_cmp/cdcss_cmp out via gpio
2018-08-10 03:32:29 +00:00
// 0 = ctcss/cdcss sdo out via gpio
void HamShield::setCtcssGpioSel(bool cmp_nsdo){
setGpioFcn(0);
}
2018-08-10 03:32:29 +00:00
bool HamShield::getCtcssGpioSel(){
uint16_t mode = getGpioMode(0);
return (mode == 1);
}
// Cdcss_sel
// 1 = long (24 bit) code
// 0 = short(23 bit) code
void HamShield::setCdcssSel(bool long_nshort){
2018-08-10 03:32:29 +00:00
HSwriteBitW(devAddr, A1846S_CTCSS_MODE_REG, A1846S_CDCSS_SEL_BIT, long_nshort);
}
bool HamShield::getCdcssSel(){
2018-08-10 03:32:29 +00:00
HSreadBitW(devAddr, A1846S_CTCSS_MODE_REG, A1846S_CDCSS_SEL_BIT, radio_i2c_buf);
return (radio_i2c_buf[0] == 1);
}
2018-08-10 03:32:29 +00:00
void HamShield::setCdcssInvert(bool invert) {
HSwriteBitW(devAddr, A1846S_CTCSS_MODE_REG, A1846S_CDCSS_INVERT_BIT, invert);
}
2018-08-10 03:32:29 +00:00
bool HamShield::getCdcssInvert() {
HSreadBitW(devAddr, A1846S_CTCSS_MODE_REG, A1846S_CDCSS_INVERT_BIT, radio_i2c_buf);
return (radio_i2c_buf[0] == 1);
}
2018-08-10 03:32:29 +00:00
// Cdcss neg_det_en
bool HamShield::getCdcssNegDetEnabled(){
2018-08-10 03:32:29 +00:00
uint16_t css_mode = getCtcssCdcssMode();
return (css_mode == 4);
}
// Cdcss pos_det_en
bool HamShield::getCdcssPosDetEnabled(){
2018-08-10 03:32:29 +00:00
uint16_t css_mode = getCtcssCdcssMode();
return (css_mode == 2);
}
// css_det_en
2018-08-10 03:32:29 +00:00
bool HamShield::getCtssDetEnabled(){
uint16_t css_mode = getCtcssCdcssMode();
return (css_mode == 1);
}
// ctcss freq
2018-08-10 03:32:29 +00:00
void HamShield::setCtcss(float freq_Hz) {
setCtcssFreq((uint16_t) (freq_Hz*100));
}
2018-08-10 03:32:29 +00:00
void HamShield::setCtcssFreq(uint16_t freq_milliHz){
2018-08-12 02:39:31 +00:00
// set RX Ctcss match thresholds (based on frequency)
// calculate thresh based on freq
float f = ((float) freq_milliHz)/100;
uint8_t thresh = (uint8_t)(-0.1*f + 25);
setCtcssDetThreshIn(thresh);
setCtcssDetThreshOut(thresh);
2018-08-16 02:30:20 +00:00
HSwriteWord(devAddr, A1846S_CTCSS_FREQ_REG, freq_milliHz);
}
2018-08-10 03:32:29 +00:00
uint16_t HamShield::getCtcssFreqMilliHz(){
2018-08-16 02:30:20 +00:00
return getCtcssFreqHz()*100;
}
2018-08-10 03:32:29 +00:00
float HamShield::getCtcssFreqHz() {
2018-08-16 02:30:20 +00:00
//y = mx + b
float m = 1.678;
float b = -3.3;
HSreadWord(devAddr, A1846S_CTCSS_FREQ_REG, radio_i2c_buf);
float f = (float) radio_i2c_buf[0];
return (f/m-b)/100;
2018-08-10 03:32:29 +00:00
}
void HamShield::setCtcssFreqToStandard(){
// freq must be 134.4Hz for standard cdcss mode
2018-08-10 03:32:29 +00:00
setCtcssFreq(13440);
}
2018-08-12 02:39:31 +00:00
void HamShield::enableCtcss() {
2018-08-10 03:32:29 +00:00
// enable TX
HSwriteBitsW(devAddr, A1846S_CTCSS_MODE_REG, 10, 2, 3);
// enable RX
setCtcssGpioSel(1);
HSwriteBitW(devAddr, A1846S_TX_VOICE_REG, A1846S_CTCSS_DET_BIT, 0);
2018-08-12 02:39:31 +00:00
HSwriteBitW(devAddr, A1846S_FILTER_REG, A1846S_CTCSS_FILTER_BYPASS, 0);
2018-08-10 03:32:29 +00:00
setDetCtcss();
}
void HamShield::disableCtcss() {
HSwriteBitsW(devAddr, A1846S_CTCSS_MODE_REG, 10, 2, 0);
disableCtcssCdcss();
}
2018-08-12 02:39:31 +00:00
// match threshold
void HamShield::setCtcssDetThreshIn(uint8_t thresh) {
HSwriteBitsW(devAddr, A1846S_CTCSS_THRESH_REG, 15, 8, thresh);
}
uint8_t HamShield::getCtcssDetThreshIn() {
HSreadBitsW(devAddr, A1846S_CTCSS_THRESH_REG, 15, 8, radio_i2c_buf);
return (uint8_t) radio_i2c_buf[0];
}
// unmatch threshold
void HamShield::setCtcssDetThreshOut(uint8_t thresh) {
HSwriteBitsW(devAddr, A1846S_CTCSS_THRESH_REG, 7, 8, thresh);
}
uint8_t HamShield::getCtcssDetThreshOut() {
HSreadBitsW(devAddr, A1846S_CTCSS_THRESH_REG, 7, 8, radio_i2c_buf);
return (uint8_t) radio_i2c_buf[0];
}
2018-08-12 03:30:09 +00:00
bool HamShield::getCtcssToneDetected() {
HSreadBitW(devAddr, A1846S_FLAG_REG, A1846S_CTCSS1_FLAG_BIT, radio_i2c_buf);
return (radio_i2c_buf[0] != 0);
}
2018-08-12 02:39:31 +00:00
// cdcss codes
void HamShield::setCdcssCode(uint16_t code) {
// note: assuming a well formed code (xyz, where x, y, and z are all 0-7)
// Set both code registers at once (23 or 24 bit code)
// sends 100, c1, c2, c3, 11 bits of crc
// TODO: figure out what to do about 24 or 23 bit codes
uint32_t cdcss_code = 0x800000; // top three bits are 100
uint32_t oct_code = code%10;
code = code / 10;
cdcss_code += oct_code << 20;
oct_code = code % 10;
code = code / 10;
cdcss_code += oct_code << 17;
cdcss_code += (code % 10) << 14;
// TODO: CRC
// set registers
2018-08-12 02:39:31 +00:00
uint16_t temp_code = (uint16_t) cdcss_code;
HSwriteWord(devAddr, A1846S_CDCSS_CODE_LO_REG, temp_code);
temp_code = ((uint16_t) (cdcss_code >> 16))&0x00FF;
HSwriteWord(devAddr, A1846S_CDCSS_CODE_HI_REG, temp_code);
}
uint16_t HamShield::getCdcssCode() {
uint32_t oct_code;
HSreadWord(devAddr, A1846S_CDCSS_CODE_HI_REG, radio_i2c_buf);
oct_code = ((uint32_t)radio_i2c_buf[0] << 16);
HSreadWord(devAddr, A1846S_CDCSS_CODE_LO_REG, radio_i2c_buf);
oct_code += radio_i2c_buf[0];
oct_code = oct_code >> 12;
uint16_t code = (oct_code & 0x3);
oct_code = oct_code >> 3;
code += (oct_code & 0x3)*10;
oct_code = oct_code >> 3;
code += (oct_code & 0x3)*100;
return code;
}
// SQ
void HamShield::setSQOn(){
2016-03-25 03:31:17 +00:00
HSwriteBitW(devAddr, A1846S_CTL_REG, A1846S_SQ_ON_BIT, 1);
}
void HamShield::setSQOff(){
2016-03-25 03:31:17 +00:00
HSwriteBitW(devAddr, A1846S_CTL_REG, A1846S_SQ_ON_BIT, 0);
}
bool HamShield::getSQState(){
2016-03-25 03:31:17 +00:00
HSreadBitW(devAddr, A1846S_CTL_REG, A1846S_SQ_ON_BIT, radio_i2c_buf);
return (radio_i2c_buf[0] != 0);
}
// SQ threshold
2016-07-01 02:33:40 +00:00
void HamShield::setSQHiThresh(int16_t sq_hi_threshold){
// Sq detect high th, rssi_cmp will be 1 when rssi>th_h_sq, unit 1dB
uint16_t sq = 137 + sq_hi_threshold;
HSwriteWord(devAddr, A1846S_SQ_OPEN_THRESH_REG, sq);
}
2016-07-01 02:33:40 +00:00
int16_t HamShield::getSQHiThresh(){
HSreadWord(devAddr, A1846S_SQ_OPEN_THRESH_REG, radio_i2c_buf);
return radio_i2c_buf[0] - 137;
}
2016-07-01 02:33:40 +00:00
void HamShield::setSQLoThresh(int16_t sq_lo_threshold){
// Sq detect low th, rssi_cmp will be 0 when rssi<th_l_sq && time delay meet, unit 1 dB
uint16_t sq = 137 + sq_lo_threshold;
HSwriteWord(devAddr, A1846S_SQ_SHUT_THRESH_REG, sq);
}
2016-07-01 02:33:40 +00:00
int16_t HamShield::getSQLoThresh(){
HSreadWord(devAddr, A1846S_SQ_SHUT_THRESH_REG, radio_i2c_buf);
return radio_i2c_buf[0] - 137;
}
// SQ out select
void HamShield::setSQOutSel(){
2016-03-25 03:31:17 +00:00
HSwriteBitW(devAddr, A1846S_SQ_OUT_SEL_REG, A1846S_SQ_OUT_SEL_BIT, 1);
}
void HamShield::clearSQOutSel(){
2016-03-25 03:31:17 +00:00
HSwriteBitW(devAddr, A1846S_SQ_OUT_SEL_REG, A1846S_SQ_OUT_SEL_BIT, 0);
}
bool HamShield::getSQOutSel(){
2016-03-25 03:31:17 +00:00
HSreadBitW(devAddr, A1846S_SQ_OUT_SEL_REG, A1846S_SQ_OUT_SEL_BIT, radio_i2c_buf);
return (radio_i2c_buf[0] != 0);
}
// VOX
void HamShield::setVoxOn(){
2016-03-25 03:31:17 +00:00
HSwriteBitW(devAddr, A1846S_CTL_REG, A1846S_VOX_ON_BIT, 1);
}
void HamShield::setVoxOff(){
2016-03-25 03:31:17 +00:00
HSwriteBitW(devAddr, A1846S_CTL_REG, A1846S_VOX_ON_BIT, 0);
}
bool HamShield::getVoxOn(){
2016-03-25 03:31:17 +00:00
HSreadBitW(devAddr, A1846S_CTL_REG, A1846S_VOX_ON_BIT, radio_i2c_buf);
return (radio_i2c_buf[0] != 0);
}
// Vox Threshold
void HamShield::setVoxOpenThresh(uint16_t vox_open_thresh){
// When vssi > th_h_vox, then vox will be 1(unit mV )
HSwriteWord(devAddr, A1846S_TH_H_VOX_REG, vox_open_thresh);
}
uint16_t HamShield::getVoxOpenThresh(){
HSreadWord(devAddr, A1846S_TH_H_VOX_REG, radio_i2c_buf);
return radio_i2c_buf[0];
}
void HamShield::setVoxShutThresh(uint16_t vox_shut_thresh){
// When vssi < th_l_vox && time delay meet, then vox will be 0 (unit mV )
HSwriteWord(devAddr, A1846S_TH_L_VOX_REG, vox_shut_thresh);
}
uint16_t HamShield::getVoxShutThresh(){
HSreadWord(devAddr, A1846S_TH_L_VOX_REG, radio_i2c_buf);
return radio_i2c_buf[0];
}
// Tail Noise
void HamShield::enableTailNoiseElim(){
2016-03-25 03:31:17 +00:00
HSwriteBitW(devAddr, A1846S_CTL_REG, A1846S_TAIL_ELIM_EN_BIT, 1);
}
void HamShield::disableTailNoiseElim(){
2016-03-25 03:31:17 +00:00
HSwriteBitW(devAddr, A1846S_CTL_REG, A1846S_TAIL_ELIM_EN_BIT, 1);
}
bool HamShield::getTailNoiseElimEnabled(){
2016-03-25 03:31:17 +00:00
HSreadBitW(devAddr, A1846S_CTL_REG, A1846S_TAIL_ELIM_EN_BIT, radio_i2c_buf);
return (radio_i2c_buf[0] != 0);
}
// tail noise shift select
// Select ctcss phase shift when use tail eliminating function when TX
2018-08-10 03:32:29 +00:00
// 00 = 0 degree shift
// 01 = 120 degree shift
// 10 = 180 degree shift
// 11 = 240 degree shift
void HamShield::setShiftSelect(uint16_t shift_sel){
2018-08-10 03:32:29 +00:00
HSwriteBitsW(devAddr, A1846S_CTCSS_MODE_REG, A1846S_SHIFT_SEL_BIT, A1846S_SHIFT_SEL_LEN, shift_sel);
}
uint16_t HamShield::getShiftSelect(){
2018-08-10 03:32:29 +00:00
HSreadBitsW(devAddr, A1846S_CTCSS_MODE_REG, A1846S_SHIFT_SEL_BIT, A1846S_SHIFT_SEL_LEN, radio_i2c_buf);
return radio_i2c_buf[0];
}
// DTMF
void HamShield::enableDTMFReceive(){
uint16_t tx_data;
tx_data = 0x2264;
HSwriteWord(devAddr, 0x77, tx_data);
tx_data = 0xD984;
HSwriteWord(devAddr, 0x78, tx_data);
tx_data = 0x1E3C;
HSwriteWord(devAddr, 0x79, tx_data);
HSwriteBitsW(devAddr, A1846S_DTMF_ENABLE_REG, A1846S_DTMF_ENABLE_BIT, 1, 1);
2018-06-17 02:13:36 +00:00
2018-06-25 00:12:04 +00:00
//HSwriteBitsW(devAddr, 0x57, 0, 1, 1); // send dtmf to speaker out
2018-06-17 02:13:36 +00:00
2018-07-03 22:32:05 +00:00
// bypass pre/de-emphasis
2018-08-12 02:39:31 +00:00
HSwriteBitsW(devAddr, A1846S_FILTER_REG, A1846S_EMPH_FILTER_EN, 1, 1);
2018-06-17 02:13:36 +00:00
}
void HamShield::setDTMFDetectTime(uint16_t detect_time) {
if (detect_time > 255) {detect_time = 255;} // maxed out
HSwriteBitsW(devAddr, A1846S_DTMF_ENABLE_REG, A18462_DTMF_DET_TIME_BIT, A18462_DTMF_DET_TIME_LEN, detect_time);
}
uint16_t HamShield::getDTMFDetectTime() {
HSreadBitsW(devAddr, A1846S_DTMF_ENABLE_REG, A18462_DTMF_DET_TIME_BIT, A18462_DTMF_DET_TIME_LEN, radio_i2c_buf);
return radio_i2c_buf[0];
}
void HamShield::setDTMFIdleTime(uint16_t idle_time) {
if (idle_time > 63) {idle_time = 63;} // maxed out
// idle time is time between DTMF Tone
HSwriteBitsW(devAddr, A1846S_DTMF_TIME_REG, A1846S_DTMF_IDLE_TIME_BIT, A1846S_DTMF_IDLE_TIME_LEN, idle_time);
}
uint16_t HamShield::getDTMFIdleTime() {
HSreadBitsW(devAddr, A1846S_DTMF_TIME_REG, A1846S_DTMF_IDLE_TIME_BIT, A1846S_DTMF_IDLE_TIME_LEN, radio_i2c_buf);
return radio_i2c_buf[0];
}
void HamShield::setDTMFTxTime(uint16_t tx_time) {
if (tx_time > 63) {tx_time = 63;} // maxed out
// tx time is duration of DTMF Tone
HSwriteBitsW(devAddr, A1846S_DTMF_TIME_REG, A1846S_DUALTONE_TX_TIME_BIT, A1846S_DUALTONE_TX_TIME_LEN, tx_time);
}
uint16_t HamShield::getDTMFTxTime() {
HSreadBitsW(devAddr, A1846S_DTMF_TIME_REG, A1846S_DUALTONE_TX_TIME_BIT, A1846S_DUALTONE_TX_TIME_LEN, radio_i2c_buf);
return radio_i2c_buf[0];
}
uint16_t HamShield::disableDTMF(){
HSwriteBitsW(devAddr, A1846S_DTMF_ENABLE_REG, A1846S_DTMF_ENABLE_BIT, 1, 0);
}
uint16_t HamShield::getDTMFSample(){
HSreadBitsW(devAddr, A1846S_DTMF_CODE_REG, A1846S_DTMF_SAMPLE_BIT, 1, radio_i2c_buf);
return radio_i2c_buf[0];
}
2018-06-17 02:13:36 +00:00
uint16_t HamShield::getDTMFTxActive(){
HSreadBitsW(devAddr, A1846S_DTMF_CODE_REG, A1846S_DTMF_TX_IDLE_BIT, 1, radio_i2c_buf);
return radio_i2c_buf[0];
}
uint16_t HamShield::getDTMFCode(){
HSreadBitsW(devAddr, A1846S_DTMF_CODE_REG, A1846S_DTMF_CODE_BIT, A1846S_DTMF_CODE_LEN, radio_i2c_buf);
return radio_i2c_buf[0];
}
2018-06-17 02:13:36 +00:00
void HamShield::setDTMFCode(uint16_t code){
uint16_t tone1, tone2;
/*
* F4 F5 F6 F7
* F0 1 2 3 A
* F1 4 5 6 B
* F2 7 8 9 C
* F3 E(*) 0 F(#) D
*/
// determine tone 1
if ((code >= 1 && code <= 3) || code == 0xA) {
tone1 = 697*10;
} else if ((code >= 4 && code <= 6) || code == 0xB) {
tone1 = 770*10;
} else if ((code >= 7 && code <= 9) || code == 0xC) {
tone1 = 852*10;
2018-06-25 00:12:04 +00:00
} else if (code >= 0xD || code == 0) {
2018-06-17 02:13:36 +00:00
tone1 = 941*10;
}
// determine tone 2
if (code == 1 || code == 4 || code == 7 || code == 0xE) {
tone2 = 1209*10;
} else if (code == 2 || code == 5 || code == 8 || code == 0) {
tone2 = 1336*10;
} else if (code == 3 || code == 6 || code == 9 || code == 0xF) {
tone2 = 1477*10;
} else if (code >= 0xA && code <= 0xD) {
tone2 = 1633*10;
}
HSwriteWord(devAddr, A1846S_TONE1_FREQ, tone1);
HSwriteWord(devAddr, A1846S_TONE2_FREQ, tone2);
}
2018-08-10 03:32:29 +00:00
// Tone detection
void HamShield::lookForTone(uint16_t t_hz) {
float tone_hz = (float) t_hz;
float Fs = 6400000/1024;
float k = floor(tone_hz/Fs*127 + 0.5);
uint16_t t = (uint16_t) (round(2.0*cos(2.0*PI*k/127)*1024));
float k2 = floor(2*tone_hz/Fs*127+0.5);
uint16_t h = (uint16_t) (round(2.0*cos(2.0*PI*k2/127)*1024));
// set tone
HSwriteWord(devAddr, 0x68, t);
// set second harmonic
HSwriteWord(devAddr, 0x70, h);
// turn on tone detect
HSwriteBitW(devAddr, A1846S_DTMF_ENABLE_REG, A1846S_TONE_DETECT, 1);
HSwriteBitW(devAddr, A1846S_DTMF_ENABLE_REG, A1846S_DTMF_ENABLE_BIT, 1);
}
uint8_t HamShield::toneDetected() {
HSreadBitsW(devAddr, A1846S_DTMF_CODE_REG, A1846S_DTMF_SAMPLE_BIT, 1, radio_i2c_buf);
if (radio_i2c_buf[0] != 0) {
HSreadBitsW(devAddr, A1846S_DTMF_CODE_REG, A1846S_DTMF_CODE_BIT, A1846S_DTMF_CODE_LEN, radio_i2c_buf);
if (radio_i2c_buf[0] == 1) {
return 1;
}
}
return 0;
}
// TX FM deviation
void HamShield::setFMVoiceCssDeviation(uint16_t deviation){
2016-03-25 03:31:17 +00:00
HSwriteBitsW(devAddr, A1846S_FM_DEV_REG, A1846S_FM_DEV_VOICE_BIT, A1846S_FM_DEV_VOICE_LENGTH, deviation);
}
uint16_t HamShield::getFMVoiceCssDeviation(){
2016-03-25 03:31:17 +00:00
HSreadBitsW(devAddr, A1846S_FM_DEV_REG, A1846S_FM_DEV_VOICE_BIT, A1846S_FM_DEV_VOICE_LENGTH, radio_i2c_buf);
return radio_i2c_buf[0];
}
void HamShield::setFMCssDeviation(uint16_t deviation){
2016-03-25 03:31:17 +00:00
HSwriteBitsW(devAddr, A1846S_FM_DEV_REG, A1846S_FM_DEV_CSS_BIT, A1846S_FM_DEV_CSS_LENGTH, deviation);
}
uint16_t HamShield::getFMCssDeviation(){
2016-03-25 03:31:17 +00:00
HSreadBitsW(devAddr, A1846S_FM_DEV_REG, A1846S_FM_DEV_CSS_BIT, A1846S_FM_DEV_CSS_LENGTH, radio_i2c_buf);
return radio_i2c_buf[0];
}
// RX voice range
2018-08-12 03:30:09 +00:00
void HamShield::setMute() {
HSwriteBitW(devAddr, A1846S_CTL_REG, A1846S_MUTE_BIT, 1);
}
void HamShield::setUnmute() {
HSwriteBitW(devAddr, A1846S_CTL_REG, A1846S_MUTE_BIT, 0);
}
void HamShield::setVolume1(uint16_t volume){
2016-03-25 03:31:17 +00:00
HSwriteBitsW(devAddr, A1846S_RX_VOLUME_REG, A1846S_RX_VOL_1_BIT, A1846S_RX_VOL_1_LENGTH, volume);
}
uint16_t HamShield::getVolume1(){
2016-03-25 03:31:17 +00:00
HSreadBitsW(devAddr, A1846S_RX_VOLUME_REG, A1846S_RX_VOL_1_BIT, A1846S_RX_VOL_1_LENGTH, radio_i2c_buf);
return radio_i2c_buf[0];
}
void HamShield::setVolume2(uint16_t volume){
2016-03-25 03:31:17 +00:00
HSwriteBitsW(devAddr, A1846S_RX_VOLUME_REG, A1846S_RX_VOL_2_BIT, A1846S_RX_VOL_2_LENGTH, volume);
}
uint16_t HamShield::getVolume2(){
2016-03-25 03:31:17 +00:00
HSreadBitsW(devAddr, A1846S_RX_VOLUME_REG, A1846S_RX_VOL_2_BIT, A1846S_RX_VOL_2_LENGTH, radio_i2c_buf);
return radio_i2c_buf[0];
}
// GPIO
void HamShield::setGpioMode(uint16_t gpio, uint16_t mode){
uint16_t mode_len = 2;
uint16_t bit = gpio*2 + 1;
2016-03-25 03:31:17 +00:00
HSwriteBitsW(devAddr, A1846S_GPIO_MODE_REG, bit, mode_len, mode);
}
void HamShield::setGpioHiZ(uint16_t gpio){
setGpioMode(gpio, 0);
}
void HamShield::setGpioFcn(uint16_t gpio){
setGpioMode(gpio, 1);
}
void HamShield::setGpioLow(uint16_t gpio){
setGpioMode(gpio, 2);
}
void HamShield::setGpioHi(uint16_t gpio){
setGpioMode(gpio, 3);
}
uint16_t HamShield::getGpioMode(uint16_t gpio){
uint16_t mode_len = 2;
uint16_t bit = gpio*2 + 1;
2016-03-25 03:31:17 +00:00
HSreadBitsW(devAddr, A1846S_GPIO_MODE_REG, bit, mode_len, radio_i2c_buf);
return radio_i2c_buf[0];
}
void HamShield::setGpios(uint16_t mode){
HSwriteWord(devAddr, A1846S_GPIO_MODE_REG, mode);
}
2015-11-23 16:54:10 +00:00
uint16_t HamShield::getGpios(){
HSreadWord(devAddr, A1846S_GPIO_MODE_REG, radio_i2c_buf);
2015-11-23 16:54:10 +00:00
return radio_i2c_buf[0];
}
// Int
void HamShield::enableInterrupt(uint16_t interrupt){
2016-03-25 03:31:17 +00:00
HSwriteBitW(devAddr, A1846S_INT_MODE_REG, interrupt, 1);
}
void HamShield::disableInterrupt(uint16_t interrupt){
2016-03-25 03:31:17 +00:00
HSwriteBitW(devAddr, A1846S_INT_MODE_REG, interrupt, 0);
}
bool HamShield::getInterruptEnabled(uint16_t interrupt){
2016-03-25 03:31:17 +00:00
HSreadBitW(devAddr, A1846S_INT_MODE_REG, interrupt, radio_i2c_buf);
return (radio_i2c_buf[0] != 0);
}
// ST mode
void HamShield::setStMode(uint16_t mode){
2016-03-25 03:31:17 +00:00
HSwriteBitsW(devAddr, A1846S_CTL_REG, A1846S_ST_MODE_BIT, A1846S_ST_MODE_LENGTH, mode);
}
uint16_t HamShield::getStMode(){
2016-03-25 03:31:17 +00:00
HSreadBitsW(devAddr, A1846S_CTL_REG, A1846S_ST_MODE_BIT, A1846S_ST_MODE_LENGTH, radio_i2c_buf);
return radio_i2c_buf[0];
}
void HamShield::setStFullAuto(){
setStMode(2);
}
void HamShield::setStRxAutoTxManu(){
setStMode(1);
}
void HamShield::setStFullManu(){
setStMode(0);
}
// Pre-emphasis, De-emphasis filter
void HamShield::bypassPreDeEmph(){
2018-08-12 02:39:31 +00:00
HSwriteBitW(devAddr, A1846S_FILTER_REG, A1846S_EMPH_FILTER_EN, 1);
}
void HamShield::usePreDeEmph(){
2018-08-12 02:39:31 +00:00
HSwriteBitW(devAddr, A1846S_FILTER_REG, A1846S_EMPH_FILTER_EN, 0);
}
bool HamShield::getPreDeEmphEnabled(){
2018-08-12 02:39:31 +00:00
HSreadBitW(devAddr, A1846S_FILTER_REG, A1846S_EMPH_FILTER_EN, radio_i2c_buf);
return (radio_i2c_buf[0] == 0);
}
// Voice Filters
void HamShield::bypassVoiceHpf(){
HSwriteBitW(devAddr, A1846S_FILTER_REG, A1846S_VHPF_FILTER_EN, 1);
}
void HamShield::useVoiceHpf(){
HSwriteBitW(devAddr, A1846S_FILTER_REG, A1846S_VHPF_FILTER_EN, 0);
}
bool HamShield::getVoiceHpfEnabled(){
HSreadBitW(devAddr, A1846S_FILTER_REG, A1846S_VHPF_FILTER_EN, radio_i2c_buf);
return (radio_i2c_buf[0] == 0);
}
2018-08-12 02:39:31 +00:00
void HamShield::bypassVoiceLpf(){
HSwriteBitW(devAddr, A1846S_FILTER_REG, A1846S_VLPF_FILTER_EN, 1);
}
void HamShield::useVoiceLpf(){
HSwriteBitW(devAddr, A1846S_FILTER_REG, A1846S_VLPF_FILTER_EN, 0);
}
bool HamShield::getVoiceLpfEnabled(){
HSreadBitW(devAddr, A1846S_FILTER_REG, A1846S_VLPF_FILTER_EN, radio_i2c_buf);
return (radio_i2c_buf[0] == 0);
}
// Vox filters
void HamShield::bypassVoxHpf(){
HSwriteBitW(devAddr, A1846S_FILTER_REG, A1846S_VXHPF_FILTER_EN, 1);
}
void HamShield::useVoxHpf(){
HSwriteBitW(devAddr, A1846S_FILTER_REG, A1846S_VXHPF_FILTER_EN, 0);
}
bool HamShield::getVoxHpfEnabled(){
HSreadBitW(devAddr, A1846S_FILTER_REG, A1846S_VXHPF_FILTER_EN, radio_i2c_buf);
return (radio_i2c_buf[0] == 0);
}
void HamShield::bypassVoxLpf(){
HSwriteBitW(devAddr, A1846S_FILTER_REG, A1846S_VXLPF_FILTER_EN, 1);
}
void HamShield::useVoxLpf(){
HSwriteBitW(devAddr, A1846S_FILTER_REG, A1846S_VXLPF_FILTER_EN, 0);
}
bool HamShield::getVoxLpfEnabled(){
HSreadBitW(devAddr, A1846S_FILTER_REG, A1846S_VXLPF_FILTER_EN, radio_i2c_buf);
return (radio_i2c_buf[0] == 0);
}
// Read Only Status Registers
int16_t HamShield::readRSSI(){
HSreadBitsW(devAddr, A1846S_RSSI_REG, A1846S_RSSI_BIT, A1846S_RSSI_LENGTH, radio_i2c_buf);
2016-04-18 00:19:33 +00:00
int16_t rssi = (radio_i2c_buf[0] & 0xFF) - 137;
return rssi;
}
uint16_t HamShield::readVSSI(){
HSreadWord(devAddr, A1846S_VSSI_REG, radio_i2c_buf);
return radio_i2c_buf[0] & 0x7FF; // only need lowest 10 bits
}
2015-07-09 15:29:50 +00:00
void HamShield::setRfPower(uint8_t pwr) {
int max_pwr = 15;
if (pwr > max_pwr) {
pwr = max_pwr;
}
2015-11-23 16:54:10 +00:00
// turn off tx/rx
HSwriteBitsW(devAddr, A1846S_CTL_REG, 6, 2, 0);
2015-11-23 16:54:10 +00:00
HSwriteBitsW(devAddr, A1846S_PABIAS_REG, A1846S_PADRV_BIT, A1846S_PADRV_LENGTH, pwr);
2015-11-23 16:54:10 +00:00
if (rx_active) {
setRX(true);
} else if (tx_active) {
setTX(true);
}
}
2015-07-09 15:29:50 +00:00
bool HamShield::frequency(uint32_t freq_khz) {
2015-11-23 16:54:10 +00:00
if((freq_khz >= 134000) && (freq_khz <= 174000)) {
2015-11-23 16:54:10 +00:00
setTxBand2m();
setFrequency(freq_khz);
return true;
}
if((freq_khz >= 200000) && (freq_khz <= 260000)) {
2015-11-23 16:54:10 +00:00
setTxBand1_2m();
setFrequency(freq_khz);
return true;
}
if((freq_khz >= 400000) && (freq_khz <= 520000)) {
2015-11-23 16:54:10 +00:00
setTxBand70cm();
setFrequency(freq_khz);
return true;
}
return false;
}
bool HamShield::frequency_float(float freq_khz) {
if((freq_khz >= 134000) && (freq_khz <= 174000)) {
setTxBand2m();
} else if((freq_khz >= 200000) && (freq_khz <= 260000)) {
setTxBand1_2m();
} else if((freq_khz >= 400000) && (freq_khz <= 520000)) {
setTxBand70cm();
} else {
return false;
}
// convert from float to int
uint32_t freq_raw = (uint32_t) (freq_khz * 16); // radio_frequency is accurate to 1/16 kHz
radio_frequency = ((float) freq_raw) / 16; // radio_frequency is accurate to 1/16 kHz
// turn off tx/rx
HSwriteBitsW(devAddr, A1846S_CTL_REG, 6, 2, 0);
// if we're using a 12MHz crystal and the frequency is
// 136.5M,409.5M and 455M, then we have to do special stuff
if (radio_frequency == 136500 ||
radio_frequency == 490500 ||
radio_frequency == 455000) {
// set up AU1846 for funky freq
HSwriteWord(devAddr, 0x05, 0x86D3);
} else {
// set up AU1846 for normal freq
HSwriteWord(devAddr, 0x05, 0x8763);
}
// send top 16 bits to A1846S_FREQ_HI_REG
uint16_t freq_half = (uint16_t) (0x3FFF & (freq_raw >> 16));
HSwriteWord(devAddr, A1846S_FREQ_HI_REG, freq_half);
// send bottom 16 bits to A1846S_FREQ_LO_REG
freq_half = (uint16_t) (freq_raw & 0xFFFF);
HSwriteWord(devAddr, A1846S_FREQ_LO_REG, freq_half);
if (rx_active) {
setRX(true);
} else if (tx_active) {
setTX(true);
}
}
/* FRS Lookup Table */
bool HamShield::setFRSChannel(uint8_t channel) {
if(channel < 15) {
setFrequency(pgm_read_dword_near(FRS + channel));
return true;
}
return false;
}
/* GMRS Lookup Table (borrows from FRS table since channels overlap) */
bool HamShield::setGMRSChannel(uint8_t channel) {
if((channel > 8) & (channel < 16)) {
channel = channel - 7; // we start with 0, to try to avoid channel 8 being nothing
setFrequency(pgm_read_dword_near(FRS + channel));
return true;
}
if(channel < 9) {
setFrequency(pgm_read_dword_near(GMRS + channel));
return true;
}
return false;
}
/* MURS band is 11.25KHz (2.5KHz dev) in channel 1-3, 20KHz (5KHz dev) in channel 4-5. Should we set this? */
bool HamShield::setMURSChannel(uint8_t channel) {
if(channel < 6) {
setFrequency(pgm_read_dword_near(MURS + channel));
return true;
}
}
/* Weather radio channels */
bool HamShield::setWXChannel(uint8_t channel) {
if(channel < 8) {
setFrequency(pgm_read_dword_near(WX + channel));
setModeReceive();
// turn off squelch?
// channel bandwidth?
return true;
}
return false;
}
/* Scan channels for strongest signal. returns channel number. You could do radio.setWXChannel(radio.scanWXChannel()) */
uint8_t HamShield::scanWXChannel() {
uint8_t channel = 0;
int16_t toprssi = 0;
for(int x = 0; x < 8; x++) {
setWXChannel(x);
delay(100);
int16_t rssi = readRSSI();
if(rssi > toprssi) { toprssi = rssi; channel = x; }
}
return channel;
}
/* removes the out of band transmit restrictions for those who hold special licenses */
void HamShield::dangerMode() {
restrictions = false;
return;
}
/* enable restrictions on out of band transmissions */
void HamShield::safeMode() {
restrictions = true;
return;
}
/* scanner mode. Scans a range and returns the active frequency when it detects a signal. If none is detected, returns 0. */
uint32_t HamShield::scanMode(uint32_t start,uint32_t stop, uint8_t speed, uint16_t step, uint16_t threshold) {
setModeReceive();
int16_t rssi = -150;
for(uint32_t freq = start; freq < stop; freq = freq + step) {
setFrequency(freq);
for(int x = 0; x < speed; x++) {
rssi = readRSSI();
if(rssi > threshold) { return freq; }
}
}
return 0; // found nothing
}
/* white space finder. (inverted scanner) Scans a range for a white space, and if no signal exists, stop there. */
uint32_t HamShield::findWhitespace(uint32_t start,uint32_t stop, uint8_t dwell, uint16_t step, uint16_t threshold) {
setModeReceive();
int16_t rssi = -150;
for(uint32_t freq = start; freq < stop; freq = freq + step) {
setFrequency(freq);
for(int x = 0; x < dwell; x++) {
rssi = readRSSI();
if(rssi > threshold) { break; }
}
if(rssi < threshold) { return freq; } /* found a blank channel */
}
return 0; // everything is busy
}
/*
channel scanner. Scans an array of channels for activity. returns channel number if found. Otherwise, returns 0. ignores whatever is in array position
0
*/
uint32_t HamShield::scanChannels(uint32_t buffer[],uint8_t buffsize, uint8_t speed, uint16_t threshold) {
setModeReceive();
int16_t rssi = 0;
for(int x = 1; x < buffsize; x++) {
setFrequency(buffer[x]);
for(int y = 0; y < speed; y++) {
rssi = readRSSI();
if(rssi > threshold) { return x; }
}
}
return 0;
}
/*
white space channel finder. Scans an array of channels for white space. returns channel number if empty found. Otherwise, returns 0. ignores whatever is in array position
0
*/
uint32_t HamShield::findWhitespaceChannels(uint32_t buffer[],uint8_t buffsize, uint8_t dwell, uint16_t threshold) {
setModeReceive();
int16_t rssi = 0;
for(int x = 1; x < buffsize; x++) {
setFrequency(buffer[x]);
for(int y = 0; y < dwell; y++) {
rssi = readRSSI();
if(rssi > threshold) { break; }
}
if(rssi < threshold) { return x; } /* found a blank channel */
}
return 0; // everything is busy
}
/* Setup the auxiliary button input mode and register the ISR */
void HamShield::buttonMode(uint8_t mode) {
pinMode(HAMSHIELD_AUX_BUTTON,INPUT); // set the pin mode to input
digitalWrite(HAMSHIELD_AUX_BUTTON,HIGH); // turn on internal pull up
if(mode == PTT_MODE) { attachInterrupt(HAMSHIELD_AUX_BUTTON, HamShield::isr_ptt, CHANGE); }
if(mode == RESET_MODE) { attachInterrupt(HAMSHIELD_AUX_BUTTON, HamShield::isr_reset, CHANGE); }
}
/* Interrupt routines */
/* handle aux button to reset condition */
void HamShield::isr_reset() {
wdt_enable(WDTO_15MS);
while(1) { }
}
/* Transmit on press, receive on release. We need debouncing !! */
void HamShield::isr_ptt() {
if((bouncer + 200) > millis()) {
if(ptt == false) {
ptt = true;
sHamShield->setModeTransmit();
bouncer = millis();
}
if(ptt == true) {
ptt = false;
sHamShield->setModeReceive();
bouncer = millis();
} }
}
/*
Radio etiquette function: Wait for empty channel.
Optional timeout (0 waits forever)
Optional break window (how much dead air to wait for after a transmission completes)
Does not take in account the millis() overflow
*/
bool HamShield::waitForChannel(long timeout = 0, long breakwindow = 0, int setRSSI = HAMSHIELD_EMPTY_CHANNEL_RSSI) {
int16_t rssi = 0; // Set RSSI to max received signal
for(int x = 0; x < 20; x++) { rssi = readRSSI(); } // "warm up" to get past RSSI hysteresis
long timer = millis() + timeout; // Setup the timeout value
if(timeout == 0) { timer = 4294967295; } // If we want to wait forever, set it to the max millis()
while(timer > millis()) { // while our timer is not timed out.
rssi = readRSSI(); // Read signal strength
if(rssi < setRSSI) { // If the channel is empty, lets see if anyone breaks in.
timer = millis() + breakwindow;
while(timer > millis()) {
rssi = readRSSI();
if(rssi > setRSSI) { return false; } // Someone broke into the channel, abort.
} return true; // It passed the test...channel is open.
}
}
return false;
}
2016-12-19 19:40:44 +00:00
// Get current morse code tone frequency (in Hz)
unsigned int HamShield::getMorseFreq() {
return morse_freq;
2016-12-19 19:40:44 +00:00
}
// Set current morse code tone frequency (in Hz)
void HamShield::setMorseFreq(unsigned int morse_freq_hz) {
morse_freq = morse_freq_hz;
2016-12-19 19:40:44 +00:00
}
2016-12-19 19:53:36 +00:00
// Get current duration of a morse dot (shorter is more WPM)
unsigned int HamShield::getMorseDotMillis() {
return morse_dot_millis;
2016-12-19 19:53:36 +00:00
}
// Set current duration of a morse dot (shorter is more WPM)
void HamShield::setMorseDotMillis(unsigned int morse_dot_dur_millis) {
morse_dot_millis = morse_dot_dur_millis;
2016-12-19 19:53:36 +00:00
}
/* Morse code out, blocking */
void HamShield::morseOut(char buffer[HAMSHIELD_MORSE_BUFFER_SIZE]) {
int i;
char prev = 0;
for(i = 0; buffer[i] != '\0' && i < HAMSHIELD_MORSE_BUFFER_SIZE; prev = buffer[i], i++) {
// On a space, delay 7 dots
if(buffer[i] == ' ') {
// We delay by 4 here, if we previously sent a symbol. Otherwise 7.
// This could probably just be always 7 and go relatively unnoticed.
if(prev == 0 || prev == ' '){
2018-08-12 02:39:31 +00:00
//tone(HAMSHIELD_PWM_PIN, 6000, morse_dot_millis * 7);
noTone(HAMSHIELD_PWM_PIN);
delay(morse_dot_millis*7);
} else {
2018-08-12 02:39:31 +00:00
//tone(HAMSHIELD_PWM_PIN, 6000, morse_dot_millis * 4);
noTone(HAMSHIELD_PWM_PIN);
delay(morse_dot_millis*4);
}
continue;
}
// Otherwise, lookup our character symbol
uint8_t bits = morseLookup(buffer[i]);
if(bits) { // If it is a valid character...
do {
if(bits & 1) {
2016-12-19 19:53:36 +00:00
tone(HAMSHIELD_PWM_PIN, morse_freq, morse_dot_millis * 3);
delay(morse_dot_millis*3);
} else {
2016-12-19 19:53:36 +00:00
tone(HAMSHIELD_PWM_PIN, morse_freq, morse_dot_millis);
delay(morse_dot_millis);
}
2018-08-12 02:39:31 +00:00
//tone(HAMSHIELD_PWM_PIN, 6000, morse_dot_millis);
noTone(HAMSHIELD_PWM_PIN);
delay(morse_dot_millis);
bits >>= 1; // Shift into the next symbol
} while(bits != 1); // Wait for 1 termination to be all we have left
}
// End of character
2018-08-12 02:39:31 +00:00
//tone(HAMSHIELD_PWM_PIN, 6000, morse_dot_millis * 3);
noTone(HAMSHIELD_PWM_PIN);
delay(morse_dot_millis * 3);
}
return;
}
/* Morse code lookup table */
uint8_t HamShield::morseLookup(char letter) {
uint8_t i;
for(i = 0; i < MORSE_TABLE_LENGTH; i++) {
#ifndef MORSE_TABLE_PROGMEM
if(asciiMorse[i].ascii == letter)
return asciiMorse[i].itu;
#else
uint16_t w = pgm_read_word_near(asciiMorseProgmem + i);
if( (char)((w>>8) & 0xff) == letter )
return (uint8_t)(w & 0xff);
#endif // MORSE_TABLE_PROGMEM
}
return 0;
}
2018-08-10 03:32:29 +00:00
uint8_t HamShield::morseReverseLookup(uint8_t itu) {
uint8_t i;
for(i = 0; i < MORSE_TABLE_LENGTH; i++) {
#ifndef MORSE_TABLE_PROGMEM
if(asciiMorse[i].itu == itu)
return asciiMorse[i].ascii;
#else
uint16_t w = pgm_read_word_near(asciiMorseProgmem + i);
if( (uint8_t)(w & 0xff) == itu )
return (char)((w>>8) & 0xff);
#endif // MORSE_TABLE_PROGMEM
}
return 0;
}
/*
SSTV VIS Digital Header
Reference: http://www.barberdsp.com/files/Dayton%20Paper.pdf
Millis Freq Description
-----------------------------------------------
300 1900 Leader tone
10 1200 break
300 1900 Leader tone
30 1200 VIS start bit
30 bit 0 1100hz = 1, 1300hz = 0
30 bit 1
30 bit 2
30 bit 3
30 bit 4
30 bit 5
30 bit 6
30 PARITY Even=1300hz,Odd=1100hz
30 1200 VIS stop bit
*/
void HamShield::SSTVVISCode(int code) {
toneWait(1900,300);
toneWait(1200,10);
toneWait(1900,300);
toneWait(1200,30);
for(int x = 0; x < 7; x++) {
if(bitRead(code,x)) { toneWait(1100,30); } else { toneWait(1300,30); }
}
if(parityCalc(code)) { toneWait(1300,30); } else { toneWait(1100,30); }
toneWait(1200,30);
return;
}
/*
SSTV Test Pattern
Print 6 color bars
MARTIN1 is only supported for this
Reference: http://www.barberdsp.com/files/Dayton%20Paper.pdf
*/
void HamShield::SSTVTestPattern(int code) {
SSTVVISCode(code);
if(code == MARTIN1) {
for(int x = 0; x < 257; x++){
toneWaitU(1200,4862); // sync pulse (4862 uS)
toneWaitU(1500,572); // sync porch (572 uS)
/* Green Channel - 146.432ms a line (we are doing 144ms) */
toneWait(2400,24);
toneWait(2400,24);
toneWait(2400,24);
toneWait(2400,24);
toneWait(1500,24);
toneWait(1500,24);
toneWaitU(1500,572); // color separator pulse (572 uS)
/* Blue Channel - 146.432ms a line (we are doing 144ms) */
toneWait(2400,24);
toneWait(1500,24);
toneWait(2400,24);
toneWait(1500,24);
toneWait(1500,24);
toneWait(2400,24);
toneWaitU(1500,572); // color separator pulse (572 uS)
/* Red Channel - 146.432ms a line (we are doing 144ms) */
toneWait(2400,24);
toneWait(2400,24);
toneWait(1500,24);
toneWait(1500,24);
toneWait(2400,24);
toneWait(1500,24);
toneWaitU(1500,572); // color separator pulse (572 uS)
}
}
}
/* wait for tone to complete */
void HamShield::toneWait(uint16_t freq, long timer) {
tone(HAMSHIELD_PWM_PIN,freq,timer);
delay(timer);
}
/* wait microseconds for tone to complete */
void HamShield::toneWaitU(uint16_t freq, long timer) {
if(freq < 16383) {
tone(HAMSHIELD_PWM_PIN,freq);
delayMicroseconds(timer); noTone(HAMSHIELD_PWM_PIN); return;
}
tone(HAMSHIELD_PWM_PIN,freq);
delay(timer / 1000); noTone(HAMSHIELD_PWM_PIN); return;
}
bool HamShield::parityCalc(int code) {
unsigned int v; // word value to compute the parity of
bool parity = false; // parity will be the parity of v
while (code)
{
parity = !parity;
code = code & (code - 1);
}
return parity;
}
/*
void HamShield::AFSKOut(char buffer[80]) {
for(int x = 0; x < 65536; x++) {
startPlayback(AFSK_mark, sizeof(AFSK_mark)); delay(8);
startPlayback(AFSK_space, sizeof(AFSK_space)); delay(8); }
}
*/
// This is the ADC timer handler. When enabled, we'll see what we're supposed
// to be reading/handling, and trigger those on the main object.
/*ISR(ADC_vect) {
TIFR1 = _BV(ICF1); // Clear the timer flag
if(HamShield::sHamShield->afsk.enabled()) {
HamShield::sHamShield->afsk.timer();
}
}*/