Added Crystal Calibration sketch with simple Serial UI. Fixed ddsAccumulator_t type.

This commit is contained in:
Stephen Olesen 2015-07-04 14:13:45 -06:00
parent 7c67a704c3
commit 4af33167a0
4 changed files with 173 additions and 6 deletions

View File

@ -121,7 +121,7 @@ bool AFSK::Encoder::start() {
lastZero = 0;
bitPosition = 0;
bitClock = 0;
preamble = 0b11000; // 6.7ms each, 23 = 153ms
preamble = 0b110000; // 6.7ms each, 23 = 153ms
done = false;
hdlc = true;
packet = 0x0; // No initial packet, find in the ISR

18
DDS.cpp
View File

@ -40,10 +40,18 @@ void DDS::start() {
// Second, setup Timer1 to trigger the ADC interrupt
// This lets us use decoding functions that run at the same reference
// clock as the DDS.
TCCR1B = _BV(CS11) | _BV(WGM13) | _BV(WGM12);
// We use ICR1 as TOP and prescale by 8
TCCR1B = _BV(CS10) | _BV(WGM13) | _BV(WGM12);
TCCR1A = 0;
ICR1 = ((F_CPU / 8) / refclk) - 1;
//ICR1 = ((F_CPU / 8) / 9600) - 1;
ICR1 = ((F_CPU / 1) / refclk) - 1;
#ifdef DDS_DEBUG_SERIAL
Serial.print(F("DDS SysClk: "));
Serial.println(F_CPU/8);
Serial.print(F("DDS RefClk: "));
Serial.println(refclk, DEC);
Serial.print(F("DDS ICR1: "));
Serial.println(ICR1, DEC);
#endif
// Configure the ADC here to automatically run and be triggered off Timer1
ADMUX = _BV(REFS0) | _BV(ADLAR) | 0; // Channel 0, shift result left (ADCH used)
@ -56,6 +64,10 @@ void DDS::start() {
void DDS::stop() {
// TODO: Stop the timers.
#ifndef DDS_USE_ONLY_TIMER2
TCCR1B = 0;
#endif
TCCR2B = 0;
}
// Set our current sine wave frequency in Hz

7
DDS.h
View File

@ -18,10 +18,10 @@
#ifdef SHORT_ACCUMULATOR
#define ACCUMULATOR_BITS 16
typedef int16_t ddsAccumulator_t;
typedef uint16_t ddsAccumulator_t;
#else
#define ACCUMULATOR_BITS 32
typedef int32_t ddsAccumulator_t;
typedef uint32_t ddsAccumulator_t;
#endif
// If defined, the timer will idle at 50% duty cycle
@ -60,6 +60,9 @@ typedef int32_t ddsAccumulator_t;
#define DDS_REFCLK_DEFAULT (62500/4)
#endif
// Output some of the calculations and information about the DDS over serial
#define DDS_DEBUG_SERIAL
// When defined, use the 1024 element sine lookup table. This improves phase
// accuracy, at the cost of more flash and CPU requirements.
// #define DDS_TABLE_LARGE

View File

@ -0,0 +1,152 @@
#define DDS_REFCLK_DEFAULT 19200
#define DDS_REFCLK_OFFSET 0
#define DDS_DEBUG_SERIAL
#include <HamShield.h>
#include <Wire.h>
HamShield radio;
DDS dds;
void setup() {
Serial.begin(9600);
Wire.begin();
radio.initialize();
radio.setVHF();
radio.setRfPower(0);
radio.setFrequency(145050);
pinMode(2, OUTPUT);
pinMode(3, OUTPUT);
pinMode(11, INPUT);
dds.start();
dds.setFrequency(1200);
dds.on();
radio.bypassPreDeEmph();
}
enum Sets {
SET_REF,
SET_TONE,
SET_AMPLITUDE
} setting = SET_TONE;
char freqBuffer[8];
char *freqBufferPtr = freqBuffer;
uint16_t lastFreq = 1200;
void loop() {
while(Serial.available()) {
char c = Serial.read();
Serial.print(c);
switch(c) {
case 'h':
Serial.println(F("Commands:"));
Serial.println(F("RefClk: u = +10, U = +100, r XXXX = XXXX"));
Serial.println(F(" d = -10, D = -100"));
Serial.println(F("Radio: T = transmit, R = receive"));
Serial.println(F("Tone: t XXXX = XXXX Hz"));
Serial.println(F("Amp.: a XXX = XXX out of 255"));
Serial.println(F("DDS: o = On, O = Off"));
Serial.println(F("ie. a 31 = 32/255 amplitude, r38400 sets 38400Hz refclk"));
Serial.println("> ");
break;
case 'u':
dds.setReferenceClock(dds.getReferenceClock()+10);
dds.setFrequency(lastFreq);
dds.start();
Serial.println(F("RefClk + 10 = "));
Serial.println(dds.getReferenceClock());
Serial.println("> ");
break;
case 'U':
dds.setReferenceClock(dds.getReferenceClock()+100);
dds.setFrequency(lastFreq);
dds.start();
Serial.println(F("RefClk + 100 = "));
Serial.println(dds.getReferenceClock());
Serial.println("> ");
break;
case 'd':
dds.setReferenceClock(dds.getReferenceClock()-10);
dds.setFrequency(lastFreq);
dds.start();
Serial.println(F("RefClk - 10 = "));
Serial.println(dds.getReferenceClock());
Serial.println("> ");
break;
case 'D':
dds.setReferenceClock(dds.getReferenceClock()-100);
dds.setFrequency(lastFreq);
dds.start();
Serial.println(F("RefClk - 100 = "));
Serial.println(dds.getReferenceClock());
Serial.println("> ");
break;
case 'T':
Serial.println(F("Radio transmit"));
radio.setModeTransmit();
Serial.println("> ");
break;
case 'R':
Serial.println(F("Radio receive"));
radio.setModeReceive();
Serial.println("> ");
break;
case 'r':
setting = SET_REF;
break;
case 't':
setting = SET_TONE;
break;
case 'a':
setting = SET_AMPLITUDE;
break;
case 'o':
dds.on();
Serial.println("> ");
break;
case 'O':
dds.off();
Serial.println("> ");
break;
default:
if(c >= '0' && c <= '9') {
*freqBufferPtr = c;
freqBufferPtr++;
}
if(c == '\n' && freqBufferPtr != freqBuffer) {
*freqBufferPtr = '\0';
freqBufferPtr = freqBuffer;
uint16_t freq = atoi(freqBuffer);
if(setting == SET_REF) {
dds.setReferenceClock(freq);
dds.setFrequency(lastFreq);
dds.start();
Serial.print(F("New Reference Clock: "));
Serial.println(dds.getReferenceClock());
} else if(setting == SET_TONE) {
dds.setFrequency(freq);
lastFreq = freq;
Serial.print(F("New Tone: "));
Serial.println(freq);
} else if(setting == SET_AMPLITUDE) {
dds.setAmplitude((uint8_t)(freq&0xFF));
Serial.print(F("New Amplitude: "));
Serial.println((uint8_t)(freq&0xFF));
}
Serial.println("> ");
}
break;
}
}
}
ISR(ADC_vect) {
TIFR1 = _BV(ICF1);
PORTD |= _BV(2);
dds.clockTick();
PORTD &= ~_BV(2);
}