Merge pull request #13 from slepp/rel-jul13

Early release branch including AFSK/AX25/KISS, PSK and SSTV.
This commit is contained in:
Nigel VH 2015-07-13 18:55:20 -07:00
commit e444b4ef4e
20 changed files with 3242 additions and 168 deletions

738
AFSK.cpp Normal file
View File

@ -0,0 +1,738 @@
#include <Arduino.h>
#include "HamShield.h"
#include "SimpleFIFO.h"
#include <util/atomic.h>
#define PHASE_BIT 8
#define PHASE_INC 1
#define PHASE_MAX (SAMPLEPERBIT * PHASE_BIT)
#define PHASE_THRES (PHASE_MAX / 2)
#define BIT_DIFFER(bitline1, bitline2) (((bitline1) ^ (bitline2)) & 0x01)
#define EDGE_FOUND(bitline) BIT_DIFFER((bitline), (bitline) >> 1)
#define PPOOL_SIZE 2
#define AFSK_SPACE 2200
#define AFSK_MARK 1200
// Timers
volatile unsigned long lastTx = 0;
volatile unsigned long lastTxEnd = 0;
volatile unsigned long lastRx = 0;
#define T_BIT ((unsigned int)(SAMPLERATE/BITRATE))
#ifdef PACKET_PREALLOCATE
SimpleFIFO<AFSK::Packet *,PPOOL_SIZE> preallocPool;
AFSK::Packet preallocPackets[PPOOL_SIZE];
#endif
void AFSK::Encoder::process() {
// We're on the start of a byte position, so fetch one
if(bitPosition == 0) {
if(preamble) { // Still in preamble
currentByte = HDLC_PREAMBLE;
--preamble; // Decrement by one
} else {
if(!packet) { // We aren't on a packet, grab one
// Unless we already sent enough
if(maxTx-- == 0) {
stop();
lastTxEnd = millis();
return;
}
packet = pBuf.getPacket();
if(!packet) { // There actually weren't any
stop(); // Stop transmitting and return
lastTxEnd = millis();
return;
}
lastTx = millis();
currentBytePos = 0;
nextByte = HDLC_FRAME; // Our next output should be a frame boundary
hdlc = true;
}
// We ran out of actual data, provide an HDLC frame (idle)
if(currentBytePos == packet->len && nextByte == 0) {
// We also get here if nextByte isn't set, to handle empty frames
pBuf.freePacket(packet);
packet = pBuf.getPacket(); // Get the next, if any
//packet = NULL;
currentBytePos = 0;
nextByte = 0;
currentByte = HDLC_FRAME;
hdlc = true;
} else {
if(nextByte) {
// We queued up something other than the actual stream to be sent next
currentByte = nextByte;
nextByte = 0;
} else {
// Get the next byte to send, but if it's an HDLC frame, escape it
// and queue the real byte for the next cycle.
currentByte = packet->getByte();
if(currentByte == HDLC_FRAME) {
nextByte = currentByte;
currentByte = HDLC_ESCAPE;
} else {
currentBytePos++;
}
hdlc = false; // If we get here, it will be NRZI bit stuffed
}
}
}
}
// Pickup the last bit
currentBit = currentByte & 0x1;
if(lastZero == 5) {
currentBit = 0; // Force a 0 bit output
} else {
currentByte >>= 1; // Bit shift it right, for the next round
++bitPosition; // Note our increase in position
}
// To handle NRZI 5 bit stuffing, count the bits
if(!currentBit || hdlc)
lastZero = 0;
else
++lastZero;
// NRZI and AFSK uses toggling 0s, "no change" on 1
// So, if not a 1, toggle to the opposite tone
if(!currentBit)
currentTone = !currentTone;
if(currentTone == 0) {
PORTD |= _BV(7);
dds->setFrequency(AFSK_SPACE);
} else {
PORTD &= ~_BV(7);
dds->setFrequency(AFSK_MARK);
}
}
bool AFSK::Encoder::start() {
if(!done || sending) {
return false;
}
if(randomWait > millis()) {
return false;
}
// First real byte is a frame
currentBit = 0;
lastZero = 0;
bitPosition = 0;
//bitClock = 0;
preamble = 0b110000; // 6.7ms each, 23 = 153ms
done = false;
hdlc = true;
packet = 0x0; // No initial packet, find in the ISR
currentBytePos = 0;
maxTx = 3;
sending = true;
nextByte = 0;
dds->setFrequency(0);
dds->on();
return true;
}
void AFSK::Encoder::stop() {
randomWait = 0;
sending = false;
done = true;
dds->setFrequency(0);
dds->off();
}
AFSK::Decoder::Decoder() {
// Initialize the sampler delay line (phase shift)
//for(unsigned char i = 0; i < SAMPLEPERBIT/2; i++)
// delay_fifo.enqueue(0);
}
bool AFSK::HDLCDecode::hdlcParse(bool bit, SimpleFIFO<uint8_t,HAMSHIELD_AFSK_RX_FIFO_LEN> *fifo) {
bool ret = true;
demod_bits <<= 1;
demod_bits |= bit ? 1 : 0;
// Flag
if(demod_bits == HDLC_FRAME) {
fifo->enqueue(HDLC_FRAME);
rxstart = true;
currchar = 0;
bit_idx = 0;
return ret;
}
// Reset
if((demod_bits & HDLC_RESET) == HDLC_RESET) {
rxstart = false;
lastRx = millis();
return ret;
}
if(!rxstart) {
return ret;
}
// Stuffed?
if((demod_bits & 0x3f) == 0x3e)
return ret;
if(demod_bits & 0x01)
currchar |= 0x80;
if(++bit_idx >= 8) {
if(currchar == HDLC_FRAME ||
currchar == HDLC_RESET ||
currchar == HDLC_ESCAPE) {
fifo->enqueue(HDLC_ESCAPE);
}
fifo->enqueue(currchar & 0xff);
currchar = 0;
bit_idx = 0;
} else {
currchar >>= 1;
}
return ret;
}
template <typename T, int size>
class FastRing {
private:
T ring[size];
uint8_t position;
public:
FastRing(): position(0) {}
inline void write(T value) {
ring[(position++) & (size-1)] = value;
}
inline T read() const {
return ring[position & (size-1)];
}
inline T readn(uint8_t n) const {
return ring[(position + (~n+1)) & (size-1)];
}
};
// Create a delay line that's half the length of the bit cycle (-90 degrees)
FastRing<uint8_t,(T_BIT/2)> delayLine;
// Handle the A/D converter interrupt (hopefully quickly :)
void AFSK::Decoder::process(int8_t curr_sample) {
// Run the same through the phase multiplier and butterworth filter
iir_x[0] = iir_x[1];
iir_x[1] = ((int8_t)delayLine.read() * curr_sample) >> 2;
iir_y[0] = iir_y[1];
iir_y[1] = iir_x[0] + iir_x[1] + (iir_y[0] >> 1) + (iir_y[0]>>3) + (iir_y[0]>>5);
// Place this ADC sample into the delay line
delayLine.write(curr_sample);
// Shift the bit into place based on the output of the discriminator
sampled_bits <<= 1;
sampled_bits |= (iir_y[1] > 0) ? 1 : 0;
// If we found a 0/1 transition, adjust phases to track
if(EDGE_FOUND(sampled_bits)) {
if(curr_phase < PHASE_THRES)
curr_phase += PHASE_INC;
else
curr_phase -= PHASE_INC;
}
// Move ahead in phase
curr_phase += PHASE_BIT;
// If we've gone over the phase maximum, we should now have some data
if(curr_phase >= PHASE_MAX) {
curr_phase %= PHASE_MAX;
found_bits <<= 1;
// If we have 3 bits or more set, it's a positive bit
register uint8_t bits = sampled_bits & 0x07;
if(bits == 0x07 || bits == 0x06 || bits == 0x05 || bits == 0x03) {
found_bits |= 1;
}
hdlc.hdlcParse(!EDGE_FOUND(found_bits), &rx_fifo); // Process it
}
}
// This routine uses a pre-allocated Packet structure
// to save on the memory requirements of the stream data
bool AFSK::Decoder::read() {
bool retVal = false;
if(!currentPacket) { // We failed a prior memory allocation
currentPacket = pBuf.makePacket(PACKET_MAX_LEN);
if(!currentPacket) // Still nothing
return false;
}
// While we have AFSK receive FIFO bytes...
while(rx_fifo.count()) {
// Grab the character
char c = rx_fifo.dequeue();
bool escaped = false;
if(c == HDLC_ESCAPE) { // We received an escaped byte, mark it
escaped = true;
// Do we want to keep HDLC_ESCAPEs in the packet?
//currentPacket->append(HDLC_ESCAPE); // Append without FCS
c = rx_fifo.dequeue(); // Reset to the next character
}
// Append all the bytes
// This will include unescaped HDLC_FRAME bytes
if(c != HDLC_FRAME || escaped) // Append frame if it is escaped
currentPacket->appendFCS(c); // Escaped characters and all else go into FCS
if(currentPacket->len > PACKET_MAX_LEN) {
// We've now gone too far and picked up far too many bytes
// Cancel this frame, start back at the beginning
currentPacket->clear();
continue;
}
// We have a frame boundary, if it isn't escaped
// If it's escaped, it was part of the data stream
if(c == HDLC_FRAME && !escaped) {
if(!currentPacket->len) {
currentPacket->clear(); // There wasn't any data, restart stream
continue;
} else {
// We have some bytes in stream, check it meets minimum payload length
// Min payload is 1 (flag) + 14 (addressing) + 2 (control/PID) + 1 (flag)
if(currentPacket->len >= 16) {
// We should end up here with a valid FCS due to the appendFCS
if(currentPacket->crcOK()) { // Magic number for the CRC check passing
// Valid frame, so, let's filter for control + PID
// Maximum search distance is 71 bytes to end of the address fields
// Skip the HDLC frame start
bool filtered = false;
for(unsigned char i = 0; i < (currentPacket->len<70?currentPacket->len:71); ++i) {
if((currentPacket->getByte() & 0x1) == 0x1) { // Found a byte with LSB set
// which marks the final address payload
// next two bytes should be the control/PID
//if(currentPacket->getByte() == 0x03 && currentPacket->getByte() == 0xf0) {
filtered = true;
break; // Found it
//}
}
}
if(!filtered) {
// Frame wasn't one we care about, discard
currentPacket->clear();
continue;
}
// It's all done and formatted, ready to go
currentPacket->ready = 1;
if(!pBuf.putPacket(currentPacket)) // Put it in the receive FIFO
pBuf.freePacket(currentPacket); // Out of FIFO space, so toss it
// Allocate a new one of maximum length
currentPacket = pBuf.makePacket(PACKET_MAX_LEN);
retVal = true;
}
}
}
// Restart the stream
currentPacket->clear();
}
}
return retVal; // This is true if we parsed a packet in this flow
}
void AFSK::Decoder::start() {
// Do this in start to allocate our first packet
currentPacket = pBuf.makePacket(PACKET_MAX_LEN);
/* ASSR &= ~(_BV(EXCLK) | _BV(AS2));
// Do non-inverting PWM on pin OC2B (arduino pin 3) (p.159).
// OC2A (arduino pin 11) stays in normal port operation:
// COM2B1=1, COM2B0=0, COM2A1=0, COM2A0=0
// Mode 1 - Phase correct PWM
TCCR2A = (TCCR2A | _BV(COM2B1)) & ~(_BV(COM2B0) | _BV(COM2A1) | _BV(COM2A0)) |
_BV(WGM21) | _BV(WGM20);
// No prescaler (p.162)
TCCR2B = (TCCR2B & ~(_BV(CS22) | _BV(CS21))) | _BV(CS20) | _BV(WGM22);
OCR2A = pow(2,COMPARE_BITS)-1;
OCR2B = 0;
// Configure the ADC and Timer1 to trigger automatic interrupts
TCCR1A = 0;
TCCR1B = _BV(CS11) | _BV(WGM13) | _BV(WGM12);
ICR1 = ((F_CPU / 8) / REFCLK) - 1;
ADMUX = _BV(REFS0) | _BV(ADLAR) | 0; // Channel 0, shift result left (ADCH used)
DDRC &= ~_BV(0);
PORTC &= ~_BV(0);
DIDR0 |= _BV(0);
ADCSRB = _BV(ADTS2) | _BV(ADTS1) | _BV(ADTS0);
ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADATE) | _BV(ADIE) | _BV(ADPS2); // | _BV(ADPS0); */
}
AFSK::PacketBuffer::PacketBuffer() {
nextPacketIn = 0;
nextPacketOut = 0;
inBuffer = 0;
for(unsigned char i = 0; i < PACKET_BUFFER_SIZE; ++i) {
packets[i] = 0x0;
}
#ifdef PACKET_PREALLOCATE
for(unsigned char i = 0; i < PPOOL_SIZE; ++i) {
// Put some empty packets in the FIFO
preallocPool.enqueue(&preallocPackets[i]);
}
#endif
}
unsigned char AFSK::PacketBuffer::readyCount() volatile {
unsigned char i;
unsigned int cnt = 0;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
for(i = 0; i < PACKET_BUFFER_SIZE; ++i) {
if(packets[i] && packets[i]->ready)
++cnt;
}
}
return cnt;
}
// Return NULL on empty packet buffers
AFSK::Packet *AFSK::PacketBuffer::getPacket() volatile {
unsigned char i = 0;
AFSK::Packet *p = NULL;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
if(inBuffer == 0) {
return 0x0;
}
do {
p = packets[nextPacketOut];
if(p) {
packets[nextPacketOut] = 0x0;
--inBuffer;
}
nextPacketOut = ++nextPacketOut % PACKET_BUFFER_SIZE;
++i;
} while(!p && i<PACKET_BUFFER_SIZE);
// Return whatever we found, if anything
}
return p;
}
//void Packet::init(uint8_t *buf, unsigned int dlen, bool freeData) {
void AFSK::Packet::init(unsigned short dlen) {
//data = (unsigned char *)buf;
ready = 0;
#ifdef PACKET_PREALLOCATE
freeData = 0;
maxLen = PACKET_MAX_LEN; // Put it here instead
#else
freeData = 1;
dataPtr = (uint8_t *)malloc(dlen+16);
maxLen = dlen; // Put it here instead
#endif
type = PACKET_STATIC;
len = 0; // We had a length, but don't put it here.
dataPos = dataPtr;
readPos = dataPtr;
fcs = 0xffff;
}
// Allocate a new packet with a data buffer as set
AFSK::Packet *AFSK::PacketBuffer::makePacket(unsigned short dlen) {
AFSK::Packet *p;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
//Packet *p = findPooledPacket();
#ifdef PACKET_PREALLOCATE
if(preallocPool.count())
p = preallocPool.dequeue();
else p = NULL;
#else
p = new Packet(); //(Packet *)malloc(sizeof(Packet));
#endif
if(p) // If allocated
p->init(dlen);
}
return p; // Passes through a null on failure.
}
// Free a packet struct, mainly convenience
void AFSK::PacketBuffer::freePacket(Packet *p) {
if(!p)
return;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
#ifdef PACKET_PREALLOCATE
preallocPool.enqueue(p);
#else
p->free();
/*unsigned char i;
for(i = 0; i < PPOOL_SIZE; ++i)
if(p == &(pPool[i]))
break;
if(i < PPOOL_SIZE)
pStatus &= ~(1<<i);*/
delete p;
#endif
}
}
// Put a packet onto the buffer array
bool AFSK::PacketBuffer::putPacket(Packet *p) volatile {
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
if(inBuffer >= PACKET_BUFFER_SIZE) {
return false;
}
packets[nextPacketIn] = p;
nextPacketIn = ++nextPacketIn % PACKET_BUFFER_SIZE;
++inBuffer;
}
return true;
}
// Print a single byte to the data array
size_t AFSK::Packet::write(uint8_t c) {
return (appendFCS(c)?1:0);
}
size_t AFSK::Packet::write(const uint8_t *ptr, size_t len) {
size_t i;
for(i = 0; i < len; ++i)
if(!appendFCS(ptr[i]))
break;
return i;
}
// Add a callsign, flagged as source, destination, or digi
// Also tell the routine the SSID to use and if this is the final callsign
size_t AFSK::Packet::appendCallsign(const char *callsign, uint8_t ssid, bool final) {
uint8_t i;
for(i = 0; i < strlen(callsign) && i < 6; i++) {
appendFCS(callsign[i]<<1);
}
if(i < 6) {
for(;i<6;i++) {
appendFCS(' '<<1);
}
}
uint8_t ssidField = (ssid&0xf) << 1;
// TODO: Handle digis in the address C bit
if(final) {
ssidField |= 0b01100001;
} else {
ssidField |= 0b11100000;
}
appendFCS(ssidField);
}
#ifdef PACKET_PARSER
// Process the AX25 frame and turn it into a bunch of useful strings
bool AFSK::Packet::parsePacket() {
uint8_t *d = dataPtr;
int i;
// First 7 bytes are destination-ssid
for(i = 0; i < 6; i++) {
dstCallsign[i] = (*d++)>>1;
if(dstCallsign[i] == ' ') {
dstCallsign[i] = '\0';
}
}
dstCallsign[6] = '\0';
dstSSID = ((*d++)>>1) & 0xF;
// Next 7 bytes are source-ssid
for(i = 0; i < 6; i++) {
srcCallsign[i] = (*d++)>>1;
if(srcCallsign[i] == ' ') {
srcCallsign[i] = '\0';
}
}
srcCallsign[6] = '\0';
srcSSID = *d++; // Don't shift yet, we need the LSB
digipeater[0][0] = '\0'; // Set null in case we have none anyway
if((srcSSID & 1) == 0) { // Not the last address field
int digi; // Which digi we're on
for(digi = 0; digi < 8; digi++) {
for(i = 0; i < 6; i++) {
digipeater[digi][i] = (*d++)>>1;
if(digipeater[digi][i] == ' ') {
digipeater[digi][i] = '\0';
}
}
uint8_t last = (*d) & 1;
digipeaterSSID[digi] = ((*d++)>>1) & 0xF;
if(last == 1)
break;
}
digipeater[digi][6] = '\0';
for(digi += 1; digi<8; digi++) { // Empty out the rest of them
digipeater[digi][0] = '\0';
}
}
// Now handle the SSID itself
srcSSID >>= 1;
srcSSID &= 0xF;
// After the address parsing, we end up on the control field
control = *d++;
// We have a PID if control type is U or I
// Control & 1 == 0 == I frame
// Control & 3 == 3 == U frame
if((control & 1) == 0 || (control & 3) == 3)
pid = *d++;
else pid = 0;
// If there is no PID, we have no data
if(!pid) {
iFrameData = NULL;
return true;
}
// At this point, we've walked far enough along that data is just at d
iFrameData = d;
// Cheat a little by setting the first byte of the FCS to 0, making it a string
// First FCS byte is found at -2, HDLC flags aren't in this buffer
dataPtr[len-2] = '\0';
return true;
}
#endif
void AFSK::Packet::printPacket(Stream *s) {
uint8_t i;
#ifdef PACKET_PARSER
if(!parsePacket()) {
s->print(F("Packet not valid"));
return;
}
s->print(srcCallsign);
if(srcSSID > 0) {
s->write('-');
s->print(srcSSID);
}
s->print(F(" > "));
s->print(dstCallsign);
if(dstSSID > 0) {
s->write('-');
s->print(dstSSID);
}
s->write(' ');
if(digipeater[0][0] != '\0') {
s->print(F("via "));
for(i = 0; i < 8; i++) {
if(digipeater[i][0] == '\0')
break;
s->print(digipeater[i]);
if(digipeaterSSID[i] != 0) {
s->write('-');
s->print(digipeaterSSID[i]);
}
if((digipeaterSSID[i] & _BV(7)) == _BV(7)) {
s->write('*'); // Digipeated already
}
// If we might have more, check to add a comma
if(i < 7 && digipeater[i+1][0] != '\0') {
s->write(',');
}
s->write(' ');
}
}
// This is an S frame, we can only print control info
if(control & 3 == 1) {
switch((control>>2)&3) {
case 0:
s->print(F("RR"));
break;
case 1:
s->print(F("RNR"));
break;
case 2:
s->print(F("REJ"));
break;
case 3: // Undefined
s->print(F("unk"));
break;
}
// Use a + to indicate poll bit
if(control & _BV(4) == _BV(4)) {
s->write('+');
}
} else if((control & 3) == 3) { // U Frame
s->print(F("U("));
s->print(control, HEX);
s->write(',');
s->print(pid, HEX);
s->print(F(") "));
} else if((control & 1) == 0) { // I Frame
s->print(F("I("));
s->print(control, HEX);
s->write(',');
s->print(pid, HEX);
s->print(F(") "));
}
s->print(F("len "));
s->print(len);
s->print(F(": "));
s->print((char *)iFrameData);
s->println();
#else // no packet parser, do a rudimentary print
// Second 6 bytes are source callsign
for(i=7; i<13; i++) {
s->write(*(dataPtr+i)>>1);
}
// SSID
s->write('-');
s->print((*(dataPtr+13) >> 1) & 0xF);
s->print(F(" -> "));
// First 6 bytes are destination callsign
for(i=0; i<6; i++) {
s->write(*(dataPtr+i)>>1);
}
// SSID
s->write('-');
s->print((*(dataPtr+6) >> 1) & 0xF);
// Control/PID next two bytes
// Skip those, print payload
for(i = 15; i<len; i++) {
s->write(*(dataPtr+i));
}
#endif
}
// Determine what we want to do on this ADC tick.
void AFSK::timer() {
static uint8_t tcnt = 0;
if(++tcnt == T_BIT && encoder.isSending()) {
PORTD |= _BV(6);
// Only run the encoder every 8th tick
// This is actually DDS RefClk / 1200 = 8, set as T_BIT
// A different refclk needs a different value
encoder.process();
tcnt = 0;
PORTD &= ~_BV(6);
} else {
decoder.process(((int8_t)(ADCH - 128)));
}
}
void AFSK::start(DDS *dds) {
afskEnabled = true;
encoder.setDDS(dds);
decoder.start();
}

301
AFSK.h Normal file
View File

@ -0,0 +1,301 @@
#ifndef _AFSK_H_
#define _AFSK_H_
#include <Arduino.h>
#include <SimpleFIFO.h>
#include <DDS.h>
#define SAMPLERATE 9600
#define BITRATE 1200
#define SAMPLEPERBIT (SAMPLERATE / BITRATE)
#define RX_FIFO_LEN 16
#define PACKET_BUFFER_SIZE 2
#define PACKET_STATIC 0
// Enable the packet parser which will tokenize the AX25 frame into easy strings
#define PACKET_PARSER
// If this is set, all the packet buffers will be pre-allocated at compile time
// This will use more RAM, but can make it easier to do memory planning.
// TODO: Make this actually work right and not crash.
#define PACKET_PREALLOCATE
// This is with all the digis, two addresses, and full payload
// Dst(7) + Src(7) + Digis(56) + Ctl(1) + PID(1) + Data(0-256) + FCS(2)
#define PACKET_MAX_LEN 330
// Minimum is Dst + Src + Ctl + FCS
#define AX25_PACKET_HEADER_MINLEN 17
// HDLC framing bits
#define HDLC_FRAME 0x7E
#define HDLC_RESET 0x7F
#define HDLC_PREAMBLE 0x00
#define HDLC_ESCAPE 0x1B
#define HDLC_TAIL 0x1C
class AFSK {
private:
volatile bool afskEnabled;
public:
bool enabled() { return afskEnabled; };
class Packet:public Print {
public:
Packet():Print() {};
virtual size_t write(uint8_t);
// Stock virtual method does what we want here.
//virtual size_t write(const char *);
virtual size_t write(const uint8_t *, size_t);
using Print::write;
unsigned char ready : 1;
unsigned char type : 2;
unsigned char freeData : 1;
unsigned short len;
unsigned short maxLen;
//void init(uint8_t *buf, unsigned int dlen, bool freeData);
void init(unsigned short dlen);
inline void free() {
if(freeData)
::free(dataPtr);
}
inline const unsigned char getByte(void) {
return *readPos++;
}
inline const unsigned char getByte(uint16_t p) {
return *(dataPtr+p);
}
inline void start() {
fcs = 0xffff;
// No longer put an explicit frame start here
//*dataPos++ = HDLC_ESCAPE;
//*dataPos++ = HDLC_FRAME;
//len = 2;
len = 0;
}
inline bool append(char c) {
if(len < maxLen) {
++len;
*dataPos++ = c;
return true;
}
return false;
}
#define UPDATE_FCS(d) e=fcs^(d); f=e^(e<<4); fcs=(fcs>>8)^(f<<8)^(f<<3)^(f>>4)
//#define UPDATE_FCS(d) s=(d)^(fcs>>8); t=s^(s>>4); fcs=(fcs<<8)^t^(t<<5)^(t<<12)
inline bool appendFCS(unsigned char c) {
register unsigned char e, f;
if(len < maxLen - 4) { // Leave room for FCS/HDLC
append(c);
UPDATE_FCS(c);
return true;
}
return false;
}
size_t appendCallsign(const char *callsign, uint8_t ssid, bool final = false);
inline void finish() {
append(~(fcs & 0xff));
append(~((fcs>>8) & 0xff));
// No longer append the frame boundaries themselves
//append(HDLC_ESCAPE);
//append(HDLC_FRAME);
ready = 1;
}
inline void clear() {
fcs = 0xffff;
len = 0;
readPos = dataPtr;
dataPos = dataPtr;
}
inline bool crcOK() {
return (fcs == 0xF0B8);
}
#ifdef PACKET_PARSER
bool parsePacket();
#endif
void printPacket(Stream *s);
private:
#ifdef PACKET_PREALLOCATE
uint8_t dataPtr[PACKET_MAX_LEN]; // 256 byte I frame + headers max of 78
#else
uint8_t *dataPtr;
#endif
#ifdef PACKET_PARSER
char srcCallsign[7];
uint8_t srcSSID;
char dstCallsign[7];
uint8_t dstSSID;
char digipeater[8][7];
uint8_t digipeaterSSID[8];
uint8_t *iFrameData;
uint8_t length;
uint8_t control;
uint8_t pid;
#endif
uint8_t *dataPos, *readPos;
unsigned short fcs;
};
class PacketBuffer {
public:
// Initialize the buffers
PacketBuffer();
// How many packets are in the buffer?
unsigned char count() volatile { return inBuffer; };
// And how many of those are ready?
unsigned char readyCount() volatile;
// Retrieve the next packet
Packet *getPacket() volatile;
// Create a packet structure as needed
// This does not place it in the queue
static Packet *makePacket(unsigned short);
// Conveniently free packet memory
static void freePacket(Packet *);
// Place a packet into the buffer
bool putPacket(Packet *) volatile;
private:
volatile unsigned char inBuffer;
Packet * volatile packets[PACKET_BUFFER_SIZE];
volatile unsigned char nextPacketIn;
volatile unsigned char nextPacketOut;
};
class Encoder {
public:
Encoder() {
randomWait = 1000; // At the very begin, wait at least one second
sending = false;
done = true;
packet = 0x0;
currentBytePos = 0;
nextByte = 0;
}
void setDDS(DDS *d) { dds = d; }
volatile inline bool isSending() volatile {
return sending;
}
volatile inline bool isDone() volatile {
return done;
}
volatile inline bool hasPackets() volatile {
return (pBuf.count() > 0);
}
inline bool putPacket(Packet *packet) {
return pBuf.putPacket(packet);
}
inline void setRandomWait() {
randomWait = 250 + (rand() % 1000) + millis();
}
bool start();
void stop();
void process();
private:
volatile bool sending;
byte currentByte;
byte currentBit : 1;
byte currentTone : 1;
byte lastZero : 3;
byte bitPosition : 3;
byte preamble : 6;
//byte bitClock;
bool hdlc;
byte nextByte;
byte maxTx;
Packet *packet;
PacketBuffer pBuf;
unsigned int currentBytePos;
volatile unsigned long randomWait;
volatile bool done;
DDS *dds;
};
class HDLCDecode {
public:
bool hdlcParse(bool, SimpleFIFO<uint8_t,RX_FIFO_LEN> *fifo);
volatile bool rxstart;
private:
uint8_t demod_bits;
uint8_t bit_idx;
uint8_t currchar;
};
class Decoder {
public:
Decoder();
void start();
bool read();
void process(int8_t);
inline bool dataAvailable() {
return (rx_fifo.count() > 0);
}
inline uint8_t getByte() {
return rx_fifo.dequeue();
}
inline uint8_t packetCount() volatile {
return pBuf.count();
}
inline Packet *getPacket() {
return pBuf.getPacket();
}
inline bool isReceiving() volatile {
return hdlc.rxstart;
}
private:
Packet *currentPacket;
//SimpleFIFO<int8_t,SAMPLEPERBIT/2+1> delay_fifo;
SimpleFIFO<uint8_t,RX_FIFO_LEN> rx_fifo; // This should be drained fairly often
int16_t iir_x[2];
int16_t iir_y[2];
uint8_t sampled_bits;
int8_t curr_phase;
uint8_t found_bits;
PacketBuffer pBuf;
HDLCDecode hdlc;
};
public:
inline bool read() {
return decoder.read();
}
volatile inline bool txReady() volatile {
if(encoder.isDone() && encoder.hasPackets())
return true;
return false;
}
volatile inline bool isDone() volatile { return encoder.isDone(); }
inline bool txStart() {
if(decoder.isReceiving()) {
encoder.setRandomWait();
return false;
}
return encoder.start();
}
inline bool putTXPacket(Packet *packet) {
bool ret = encoder.putPacket(packet);
if(!ret) // No room?
PacketBuffer::freePacket(packet);
return ret;
}
inline Packet *getRXPacket() {
return decoder.getPacket();
}
inline uint8_t rxPacketCount() volatile {
return decoder.packetCount();
}
//unsigned long lastTx;
//unsigned long lastRx;
void start(DDS *);
void timer();
Encoder encoder;
Decoder decoder;
};
#endif /* _AFSK_H_ */

175
DDS.cpp Normal file
View File

@ -0,0 +1,175 @@
#include <Arduino.h>
#include "DDS.h"
// To start the DDS, we use Timer1, set to the reference clock
// We use Timer2 for the PWM output, running as fast as feasible
void DDS::start() {
// Use the clkIO clock rate
ASSR &= ~(_BV(EXCLK) | _BV(AS2));
// First, the timer for the PWM output
// Setup the timer to use OC2B (pin 3) in fast PWM mode with a configurable top
// Run it without the prescaler
#ifdef DDS_PWM_PIN_3
TCCR2A = (TCCR2A | _BV(COM2B1)) & ~(_BV(COM2B0) | _BV(COM2A1) | _BV(COM2A0)) |
_BV(WGM21) | _BV(WGM20);
TCCR2B = (TCCR2B & ~(_BV(CS22) | _BV(CS21))) | _BV(CS20) | _BV(WGM22);
#else
// Alternatively, use pin 11
// Enable output compare on OC2A, toggle mode
TCCR2A = _BV(COM2A1) | _BV(WGM21) | _BV(WGM20);
//TCCR2A = (TCCR2A | _BV(COM2A1)) & ~(_BV(COM2A0) | _BV(COM2B1) | _BV(COM2B0)) |
// _BV(WGM21) | _BV(WGM20);
TCCR2B = _BV(CS20);
#endif
// Set the top limit, which will be our duty cycle accuracy.
// Setting Comparator Bits smaller will allow for higher frequency PWM,
// with the loss of resolution.
#ifdef DDS_PWM_PIN_3
OCR2A = pow(2,COMPARATOR_BITS)-1;
OCR2B = 0;
#else
OCR2A = 0;
#endif
#ifdef DDS_USE_ONLY_TIMER2
TIMSK2 |= _BV(TOIE2);
#endif
// Second, setup Timer1 to trigger the ADC interrupt
// This lets us use decoding functions that run at the same reference
// clock as the DDS.
// We use ICR1 as TOP and prescale by 8
TCCR1B = _BV(CS10) | _BV(WGM13) | _BV(WGM12);
TCCR1A = 0;
ICR1 = ((F_CPU / 1) / refclk) - 1;
#ifdef DDS_DEBUG_SERIAL
Serial.print(F("DDS SysClk: "));
Serial.println(F_CPU/8);
Serial.print(F("DDS RefClk: "));
Serial.println(refclk, DEC);
Serial.print(F("DDS ICR1: "));
Serial.println(ICR1, DEC);
#endif
// Configure the ADC here to automatically run and be triggered off Timer1
ADMUX = _BV(REFS0) | _BV(ADLAR) | 0; // Channel 0, shift result left (ADCH used)
DDRC &= ~_BV(0);
PORTC &= ~_BV(0);
DIDR0 |= _BV(0);
ADCSRB = _BV(ADTS2) | _BV(ADTS1) | _BV(ADTS0);
ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADATE) | _BV(ADIE) | _BV(ADPS2); // | _BV(ADPS0);
}
void DDS::stop() {
// TODO: Stop the timers.
#ifndef DDS_USE_ONLY_TIMER2
TCCR1B = 0;
#endif
TCCR2B = 0;
}
// Set our current sine wave frequency in Hz
ddsAccumulator_t DDS::calcFrequency(unsigned short freq) {
// Fo = (M*Fc)/2^N
// M = (Fo/Fc)*2^N
ddsAccumulator_t newStep;
if(refclk == DDS_REFCLK_DEFAULT) {
// Try to use precalculated values if possible
if(freq == 2200) {
newStep = (2200.0 / (DDS_REFCLK_DEFAULT+DDS_REFCLK_OFFSET)) * pow(2,ACCUMULATOR_BITS);
} else if (freq == 1200) {
newStep = (1200.0 / (DDS_REFCLK_DEFAULT+DDS_REFCLK_OFFSET)) * pow(2,ACCUMULATOR_BITS);
} else if(freq == 2400) {
newStep = (2400.0 / (DDS_REFCLK_DEFAULT+DDS_REFCLK_OFFSET)) * pow(2,ACCUMULATOR_BITS);
} else if (freq == 1500) {
newStep = (1500.0 / (DDS_REFCLK_DEFAULT+DDS_REFCLK_OFFSET)) * pow(2,ACCUMULATOR_BITS);
} else if (freq == 600) {
newStep = (600.0 / (DDS_REFCLK_DEFAULT+DDS_REFCLK_OFFSET)) * pow(2,ACCUMULATOR_BITS);
}
} else {
newStep = pow(2,ACCUMULATOR_BITS)*freq / (refclk+refclkOffset);
}
return newStep;
}
// Degrees should be between -360 and +360 (others don't make much sense)
void DDS::setPhaseDeg(int16_t degrees) {
accumulator = degrees * (pow(2,ACCUMULATOR_BITS)/360.0);
}
void DDS::changePhaseDeg(int16_t degrees) {
accumulator += degrees * (pow(2,ACCUMULATOR_BITS)/360.0);
}
// TODO: Clean this up a bit..
void DDS::clockTick() {
/* if(running) {
accumulator += stepRate;
OCR2A = getDutyCycle();
}
return;*/
if(running) {
accumulator += stepRate;
if(timeLimited && tickDuration == 0) {
#ifndef DDS_PWM_PIN_3
OCR2A = 0;
#else
#ifdef DDS_IDLE_HIGH
// Set the duty cycle to 50%
OCR2B = pow(2,COMPARATOR_BITS)/2;
#else
// Set duty cycle to 0, effectively off
OCR2B = 0;
#endif
#endif
running = false;
accumulator = 0;
} else {
#ifdef DDS_PWM_PIN_3
OCR2B = getDutyCycle();
#else
OCR2A = getDutyCycle();
#endif
}
// Reduce our playback duration by one tick
tickDuration--;
} else {
// Hold it low
#ifndef DDS_PWM_PIN_3
OCR2A = 0;
#else
#ifdef DDS_IDLE_HIGH
// Set the duty cycle to 50%
OCR2B = pow(2,COMPARATOR_BITS)/2;
#else
// Set duty cycle to 0, effectively off
OCR2B = 0;
#endif
#endif
}
}
uint8_t DDS::getDutyCycle() {
#if ACCUMULATOR_BIT_SHIFT >= 24
uint16_t phAng;
#else
uint8_t phAng;
#endif
if(amplitude == 0) // Shortcut out on no amplitude
return 128>>(8-COMPARATOR_BITS);
phAng = (accumulator >> ACCUMULATOR_BIT_SHIFT);
int8_t position = pgm_read_byte_near(ddsSineTable + phAng); //>>(8-COMPARATOR_BITS);
// Apply scaling and return
int16_t scaled = position;
// output = ((duty * amplitude) / 256) + 128
// This keeps amplitudes centered around 50% duty
if(amplitude != 255) { // Amplitude is reduced, so do the full math
scaled *= amplitude;
scaled >>= 8+(8-COMPARATOR_BITS);
} else { // Otherwise, only shift for the comparator bits
scaled >>= (8-COMPARATOR_BITS);
}
scaled += 128>>(8-COMPARATOR_BITS);
return scaled;
}

228
DDS.h Normal file
View File

@ -0,0 +1,228 @@
#ifndef _DDS_H_
#define _DDS_H_
#include <avr/pgmspace.h>
// Use pin 3 for PWM? If not defined, use pin 11
// Quality on pin 3 is higher than on 11, as it can be clocked faster
// when the COMPARATOR_BITS value is less than 8
#define DDS_PWM_PIN_3
// Normally, we turn on timer2 and timer1, and have ADC sampling as our clock
// Define this to only use Timer2, and not start the ADC clock
// #define DDS_USE_ONLY_TIMER2
// Use a short (16 bit) accumulator. Phase accuracy is reduced, but speed
// is increased, along with a reduction in memory use.
#define SHORT_ACCUMULATOR
#ifdef SHORT_ACCUMULATOR
#define ACCUMULATOR_BITS 16
typedef uint16_t ddsAccumulator_t;
#else
#define ACCUMULATOR_BITS 32
typedef uint32_t ddsAccumulator_t;
#endif
// If defined, the timer will idle at 50% duty cycle
// This leaves it floating in the centre of the PWM/DAC voltage range
#define DDS_IDLE_HIGH
// Select how fast the PWM is, at the expense of level accuracy.
// A faster PWM rate will make for easier filtering of the output wave,
// while a slower one will allow for more accurate voltage level outputs,
// but will increase the filtering requirements on the output.
// 8 = 62.5kHz PWM
// 7 = 125kHz PWM
// 6 = 250kHz PWM
#ifdef DDS_PWM_PIN_3
#define COMPARATOR_BITS 6
#else // When using pin 11, we always want 8 bits
#define COMPARATOR_BITS 8
#endif
// This is how often we'll perform a phase advance, as well as ADC sampling
// rate. The higher this value, the smoother the output wave will be, at the
// expense of CPU time. It maxes out around 62000 (TBD)
// May be overridden in the sketch to improve performance
#ifndef DDS_REFCLK_DEFAULT
#define DDS_REFCLK_DEFAULT 9600
#endif
// As each Arduino crystal is a little different, this can be fine tuned to
// provide more accurate frequencies. Adjustments in the range of hundreds
// is a good start.
#ifndef DDS_REFCLK_OFFSET
#define DDS_REFCLK_OFFSET 0
#endif
#ifdef DDS_USE_ONLY_TIMER2
// TODO: Figure out where this clock value is generated from
#define DDS_REFCLK_DEFAULT (62500/4)
#endif
// Output some of the calculations and information about the DDS over serial
//#define DDS_DEBUG_SERIAL
// When defined, use the 1024 element sine lookup table. This improves phase
// accuracy, at the cost of more flash and CPU requirements.
// #define DDS_TABLE_LARGE
#ifdef DDS_TABLE_LARGE
// How many bits to keep from the accumulator to look up in this table
#define ACCUMULATOR_BIT_SHIFT (ACCUMULATOR_BITS-10)
static const int8_t ddsSineTable[1024] PROGMEM = {
0, 0, 1, 2, 3, 3, 4, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 13, 13, 14, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 23, 24,
24, 25, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, 39, 39, 40, 41, 42, 42, 43, 44, 44, 45, 46, 47, 47,
48, 49, 50, 50, 51, 52, 52, 53, 54, 55, 55, 56, 57, 57, 58, 59, 59, 60, 61, 61, 62, 63, 63, 64, 65, 65, 66, 67, 67, 68, 69, 69,
70, 71, 71, 72, 73, 73, 74, 75, 75, 76, 76, 77, 78, 78, 79, 79, 80, 81, 81, 82, 82, 83, 84, 84, 85, 85, 86, 87, 87, 88, 88, 89,
89, 90, 90, 91, 91, 92, 93, 93, 94, 94, 95, 95, 96, 96, 97, 97, 98, 98, 99, 99, 100, 100, 101, 101, 102, 102, 102, 103, 103, 104, 104, 105,
105, 106, 106, 106, 107, 107, 108, 108, 108, 109, 109, 110, 110, 110, 111, 111, 112, 112, 112, 113, 113, 113, 114, 114, 114, 115, 115, 115, 116, 116, 116, 117,
117, 117, 117, 118, 118, 118, 119, 119, 119, 119, 120, 120, 120, 120, 121, 121, 121, 121, 121, 122, 122, 122, 122, 123, 123, 123, 123, 123, 123, 124, 124, 124,
124, 124, 124, 124, 125, 125, 125, 125, 125, 125, 125, 125, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126,
127, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 125, 125, 125, 125, 125, 125, 125, 125, 124, 124, 124,
124, 124, 124, 124, 123, 123, 123, 123, 123, 123, 122, 122, 122, 122, 121, 121, 121, 121, 121, 120, 120, 120, 120, 119, 119, 119, 119, 118, 118, 118, 117, 117,
117, 117, 116, 116, 116, 115, 115, 115, 114, 114, 114, 113, 113, 113, 112, 112, 112, 111, 111, 110, 110, 110, 109, 109, 108, 108, 108, 107, 107, 106, 106, 106,
105, 105, 104, 104, 103, 103, 102, 102, 102, 101, 101, 100, 100, 99, 99, 98, 98, 97, 97, 96, 96, 95, 95, 94, 94, 93, 93, 92, 91, 91, 90, 90,
89, 89, 88, 88, 87, 87, 86, 85, 85, 84, 84, 83, 82, 82, 81, 81, 80, 79, 79, 78, 78, 77, 76, 76, 75, 75, 74, 73, 73, 72, 71, 71,
70, 69, 69, 68, 67, 67, 66, 65, 65, 64, 63, 63, 62, 61, 61, 60, 59, 59, 58, 57, 57, 56, 55, 55, 54, 53, 52, 52, 51, 50, 50, 49,
48, 47, 47, 46, 45, 44, 44, 43, 42, 42, 41, 40, 39, 39, 38, 37, 36, 36, 35, 34, 33, 33, 32, 31, 30, 30, 29, 28, 27, 27, 26, 25,
24, 24, 23, 22, 21, 20, 20, 19, 18, 17, 17, 16, 15, 14, 13, 13, 12, 11, 10, 10, 9, 8, 7, 7, 6, 5, 4, 3, 3, 2, 1, 0,
0, 0, -1, -2, -3, -3, -4, -5, -6, -7, -7, -8, -9, -10, -10, -11, -12, -13, -13, -14, -15, -16, -17, -17, -18, -19, -20, -20, -21, -22, -23, -24,
-24, -25, -26, -27, -27, -28, -29, -30, -30, -31, -32, -33, -33, -34, -35, -36, -36, -37, -38, -39, -39, -40, -41, -42, -42, -43, -44, -44, -45, -46, -47, -47,
-48, -49, -50, -50, -51, -52, -52, -53, -54, -55, -55, -56, -57, -57, -58, -59, -59, -60, -61, -61, -62, -63, -63, -64, -65, -65, -66, -67, -67, -68, -69, -69,
-70, -71, -71, -72, -73, -73, -74, -75, -75, -76, -76, -77, -78, -78, -79, -79, -80, -81, -81, -82, -82, -83, -84, -84, -85, -85, -86, -87, -87, -88, -88, -89,
-89, -90, -90, -91, -91, -92, -93, -93, -94, -94, -95, -95, -96, -96, -97, -97, -98, -98, -99, -99, -100, -100, -101, -101, -102, -102, -102, -103, -103, -104, -104, -105,
-105, -106, -106, -106, -107, -107, -108, -108, -108, -109, -109, -110, -110, -110, -111, -111, -112, -112, -112, -113, -113, -113, -114, -114, -114, -115, -115, -115, -116, -116, -116, -117,
-117, -117, -117, -118, -118, -118, -119, -119, -119, -119, -120, -120, -120, -120, -121, -121, -121, -121, -121, -122, -122, -122, -122, -123, -123, -123, -123, -123, -123, -124, -124, -124,
-124, -124, -124, -124, -125, -125, -125, -125, -125, -125, -125, -125, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126,
-127, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -125, -125, -125, -125, -125, -125, -125, -125, -124, -124, -124,
-124, -124, -124, -124, -123, -123, -123, -123, -123, -123, -122, -122, -122, -122, -121, -121, -121, -121, -121, -120, -120, -120, -120, -119, -119, -119, -119, -118, -118, -118, -117, -117,
-117, -117, -116, -116, -116, -115, -115, -115, -114, -114, -114, -113, -113, -113, -112, -112, -112, -111, -111, -110, -110, -110, -109, -109, -108, -108, -108, -107, -107, -106, -106, -106,
-105, -105, -104, -104, -103, -103, -102, -102, -102, -101, -101, -100, -100, -99, -99, -98, -98, -97, -97, -96, -96, -95, -95, -94, -94, -93, -93, -92, -91, -91, -90, -90,
-89, -89, -88, -88, -87, -87, -86, -85, -85, -84, -84, -83, -82, -82, -81, -81, -80, -79, -79, -78, -78, -77, -76, -76, -75, -75, -74, -73, -73, -72, -71, -71,
-70, -69, -69, -68, -67, -67, -66, -65, -65, -64, -63, -63, -62, -61, -61, -60, -59, -59, -58, -57, -57, -56, -55, -55, -54, -53, -52, -52, -51, -50, -50, -49,
-48, -47, -47, -46, -45, -44, -44, -43, -42, -42, -41, -40, -39, -39, -38, -37, -36, -36, -35, -34, -33, -33, -32, -31, -30, -30, -29, -28, -27, -27, -26, -25,
-24, -24, -23, -22, -21, -20, -20, -19, -18, -17, -17, -16, -15, -14, -13, -13, -12, -11, -10, -10, -9, -8, -7, -7, -6, -5, -4, -3, -3, -2, -1, 0
};
#else
#define ACCUMULATOR_BIT_SHIFT (ACCUMULATOR_BITS-8)
static const int8_t ddsSineTable[256] PROGMEM = {
0, 3, 6, 9, 12, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49,
51, 54, 57, 60, 63, 65, 68, 71, 73, 76, 78, 81, 83, 85, 88, 90,
92, 94, 96, 98, 100, 102, 104, 106, 107, 109, 111, 112, 113, 115,
116, 117, 118, 120, 121, 122, 122, 123, 124, 125, 125, 126, 126,
126, 127, 127, 127, 127, 127, 127, 127, 126, 126, 126, 125, 125,
124, 123, 122, 122, 121, 120, 118, 117, 116, 115, 113, 112, 111,
109, 107, 106, 104, 102, 100, 98, 96, 94, 92, 90, 88, 85, 83, 81,
78, 76, 73, 71, 68, 65, 63, 60, 57, 54, 51, 49, 46, 43, 40, 37,
34, 31, 28, 25, 22, 19, 16, 12, 9, 6, 3, 0, -3, -6, -9, -12, -16,
-19, -22, -25, -28, -31, -34, -37, -40, -43, -46, -49, -51, -54,
-57, -60, -63, -65, -68, -71, -73, -76, -78, -81, -83, -85, -88,
-90, -92, -94, -96, -98, -100, -102, -104, -106, -107, -109, -111,
-112, -113, -115, -116, -117, -118, -120, -121, -122, -122, -123,
-124, -125, -125, -126, -126, -126, -127, -127, -127, -127, -127,
-127, -127, -126, -126, -126, -125, -125, -124, -123, -122, -122,
-121, -120, -118, -117, -116, -115, -113, -112, -111, -109, -107,
-106, -104, -102, -100, -98, -96, -94, -92, -90, -88, -85, -83,
-81, -78, -76, -73, -71, -68, -65, -63, -60, -57, -54, -51, -49,
-46, -43, -40, -37, -34, -31, -28, -25, -22, -19, -16, -12, -9, -6, -3
};
#endif /* DDS_TABLE_LARGE */
class DDS {
public:
DDS(): refclk(DDS_REFCLK_DEFAULT), refclkOffset(DDS_REFCLK_OFFSET),
accumulator(0), running(false),
timeLimited(false), tickDuration(0), amplitude(255)
{};
// Start all of the timers needed
void start();
// Is the DDS presently producing a tone?
const bool isRunning() { return running; };
// Stop the DDS timers
void stop();
// Start and stop the PWM output
void on() {
timeLimited = false;
running = true;
}
// Provide a duration in ms for the tone
void on(unsigned short duration) {
// Duration in ticks from milliseconds is:
// t = (1/refclk)
tickDuration = (unsigned long)((unsigned long)duration * (unsigned long)refclk) / 1000;
timeLimited = true;
running = true;
}
void off() {
running = false;
}
// Generate a tone for a specific amount of time
void play(unsigned short freq, unsigned short duration) {
setFrequency(freq);
on(duration);
}
// Blocking version
void playWait(unsigned short freq, unsigned short duration) {
play(freq, duration);
delay(duration);
}
// Use these to get some calculated values for specific frequencies
// or to get the current frequency stepping rate.
ddsAccumulator_t calcFrequency(unsigned short freq);
ddsAccumulator_t getPhaseAdvance() { return stepRate; };
// Our maximum clock isn't very high, so our highest
// frequency supported will fit in a short.
void setFrequency(unsigned short freq) { stepRate = calcFrequency(freq); };
void setPrecalcFrequency(ddsAccumulator_t freq) { stepRate = freq; };
// Handle phase shifts
void setPhaseDeg(int16_t degrees);
void changePhaseDeg(int16_t degrees);
// Adjustable reference clock. This shoud be done before the timers are
// started, or they will need to be restarted. Frequencies will need to
// be set again to use the new clock.
void setReferenceClock(unsigned long ref) {
refclk = ref;
}
unsigned long getReferenceClock() {
return refclk;
}
void setReferenceOffset(int16_t offset) {
refclkOffset = offset;
}
int16_t getReferenceOffset() {
return refclkOffset;
}
uint8_t getDutyCycle();
// Set a scaling factor. To keep things quick, this is a power of 2 value.
// Set it with 0 for lowest (which will be off), 8 is highest.
void setAmplitude(unsigned char amp) {
amplitude = amp;
}
// This is the function called by the ADC_vect ISR to produce the tones
void clockTick();
private:
volatile bool running;
volatile unsigned long tickDuration;
volatile bool timeLimited;
volatile unsigned char amplitude;
volatile ddsAccumulator_t accumulator;
volatile ddsAccumulator_t stepRate;
ddsAccumulator_t refclk;
int16_t refclkOffset;
static DDS *sDDS;
};
#endif /* _DDS_H_ */

View File

@ -144,135 +144,138 @@ void HamShield::initialize() {
// Note: these initial settings are for UHF 12.5kHz channel
// see the A1846S register table and initial settings for more info
// TODO: update code to make it easier to change from VHF to UHF and 12.5kHz channel to 25kHz channel
uint16_t tx_data;
// reset all registers in A1846S
softReset();
// set pdn_reg bit in control register (0 or 1?) (now done in softReset)
//I2Cdev::writeBitW(devAddr, A1846S_CTL_REG, A1846S_PWR_DWN_BIT, 1);
tx_data = 0x0698;
I2Cdev::writeWord(devAddr, 0x02, tx_data); // why is this here? See A1846S register init table
//set up clock to ues 12-14MHz
setClkMode(1);
// set up clock to use 12.8MHz crystal
setXtalFreq(12800);
// set up ADClk frequency to 6.4MHz
setAdcClkFreq(6400);
tx_data = 0xE000;
I2Cdev::writeWord(devAddr, 0x24, tx_data); // why is this here? See A1846S register init word doc
tx_data = 0x0031;
I2Cdev::writeWord(devAddr, 0x31, tx_data); // included as per AU supplied register table
//could change GPIO voltage levels with writes to 0x08 and 0x09
// see A1846S register init table
tx_data = 0x03AC;
I2Cdev::writeWord(devAddr, 0x09, tx_data); // why is this here? See A1846S register init word doc
tx_data = 0x44A5;
I2Cdev::writeWord(devAddr, 0x33, tx_data); // agc number - included as per AU supplied register table
// set PA_bias voltage to 1.68V (and do something else too? what's the 3 for?)
tx_data = 0x0320;
I2Cdev::writeWord(devAddr, 0x0A, tx_data);
tx_data = 0x2B87;
I2Cdev::writeWord(devAddr, 0x34, tx_data); // Rx digital gain - included as per AU supplied register table
tx_data = 0x1A10;
I2Cdev::writeWord(devAddr, 0x0B, tx_data); // why is this here? See A1846S register init table
tx_data = 0x470F;
I2Cdev::writeWord(devAddr, 0x41, tx_data); // digital gain for Tx - included as per AU supplied register table
tx_data = 0x3E37;
I2Cdev::writeWord(devAddr, 0x11, tx_data); // why is this here? See A1846S register init table
tx_data = 0x0DFF;
I2Cdev::writeWord(devAddr, A1846S_RX_VOLUME_REG, tx_data);
// Automatic Gain Control stuff
// AGC when band is UHF,0x32 = 0x627C;when band is VHF,0x32 = 0x62BC//
tx_data = 0x627c; // this is uhf, for vhf set to 0x62bc
I2Cdev::writeWord(devAddr, 0x32, tx_data); // why is this here? See A1846S register init table
tx_data = 0x0AF2;
I2Cdev::writeWord(devAddr, 0x33, tx_data); // why is this here? See A1846S register init table
tx_data = 0x7FFF;
I2Cdev::writeWord(devAddr, 0x47, tx_data);// soft mute
// why is this here? See A1846S register init word doc
tx_data = 0x0F28; // this is uhf, for vhf set to 0x62bc
I2Cdev::writeWord(devAddr, 0x3C, tx_data); // why is this here? See A1846S register init table
tx_data = 0x200B;
I2Cdev::writeWord(devAddr, 0x3D, tx_data); // why is this here? See A1846S register init table
tx_data = 0x2C62;
I2Cdev::writeWord(devAddr, 0x4F, tx_data);// included as per AU supplied register table
// Noise threshold settings
tx_data = 0x1C2F; // see email from Iris
I2Cdev::writeWord(devAddr, 0x47, tx_data); // why is this here? See A1846S register init table
tx_data = 0x0094;
I2Cdev::writeWord(devAddr, 0x53, tx_data);// included as per AU supplied register table
// SNR LPF settings, sq settings
tx_data = 0x293A;
I2Cdev::writeWord(devAddr, 0x4e, tx_data); // why is this here? See A1846S register init table
tx_data = 0x0081;
I2Cdev::writeWord(devAddr, 0x55, tx_data);// included as per AU supplied register table
// subaudio decode setting,sq_out_sel,noise threshold value db
tx_data = 0x114A; // A1846S_SQ_OUT_SEL_REG is 0x54
I2Cdev::writeWord(devAddr, A1846S_SQ_OUT_SEL_REG, tx_data); // why is this here? See A1846S register init table
tx_data = 0x0B22;
I2Cdev::writeWord(devAddr, 0x56, tx_data);// sq detection time
// bandwide setting of filter when RSSI is high or low
tx_data = 0x0652;
I2Cdev::writeWord(devAddr, 0x56, tx_data); // why is this here? See A1846S register init table
tx_data = 0x1C00;
I2Cdev::writeWord(devAddr, 0x57, tx_data);// bypass rssi lpfilter
tx_data = 0x062d;
I2Cdev::writeWord(devAddr, 0x6e, tx_data); // why is this here? See A1846S register init table
tx_data = 0x0EDB;
I2Cdev::writeWord(devAddr, 0x5A, tx_data);// SQ detection time
// note, this is for 12.5kHz channel
tx_data = 0x6C1E;
I2Cdev::writeWord(devAddr, 0x71, tx_data); // why is this here? See A1846S register init table
tx_data = 0x101E;
I2Cdev::writeWord(devAddr, 0x60, tx_data);// SQ noise threshold
// see A1846S register init doc for this
tx_data = 0x00FF;
I2Cdev::writeWord(devAddr, 0x44, tx_data); // why is this here? See A1846S register init table
tx_data = 0x0500;
I2Cdev::writeWord(devAddr, 0x1F, tx_data); // set up GPIO for RX/TX mirroring
tx_data = 0x16AD;
I2Cdev::writeWord(devAddr, 0x63, tx_data);// pre-emphasis bypass threshold
// set RFoutput power (note that the address is 0x85, so do some rigmaroll)
tx_data = 0x1;
I2Cdev::writeWord(devAddr, 0x7F, tx_data); // prep to write to a reg > 0x7F
// If 0x85 is 0x001F, Rfoutput power is 8dBm , ACP is -63dB in 12.5KHz and -65dB in 25KHz
// If 0x85 is 0x0018, Rfoutput power is 6dBm , ACP is -64dB in 12.5KHz and -66dB in 25KHz
// If 0x85 is 0x0017, Rfoutput power is -3dBm , ACP is -68dBc in 12.5KHz and -68dBc in 25KHz
tx_data = 0x001F;
I2Cdev::writeWord(devAddr, 0x5, tx_data); // set output power, reg 0x85 - 0x80
tx_data = 0x0;
I2Cdev::writeWord(devAddr, 0x7F, tx_data); // finish writing to a reg > 0x7F
// set control reg for pdn_reg, rx, and mute when rxno
tx_data = 0xA4;
I2Cdev::writeWord(devAddr, A1846S_CTL_REG, tx_data); // finish writing to a reg > 0x7F
delay(100);
// set control reg for chip_cal_en, pdn_reg, rx, and mute when rxno
tx_data = 0xA6;
I2Cdev::writeWord(devAddr, A1846S_CTL_REG, tx_data); // finish writing to a reg > 0x7F
delay(100);
// set control reg for chip_cal_en, pdn_reg
tx_data = 0x6;
I2Cdev::writeWord(devAddr, A1846S_CTL_REG, tx_data); // finish writing to a reg > 0x7F
delay(100);
// and then I have no idea about this nonsense
// some of these settings seem to be for 12.5kHz channels
// TODO: get A1846S to give us a full register table
tx_data = 0x1d40;
I2Cdev::writeWord(devAddr, 0x54, tx_data);
tx_data = 0x062d;
I2Cdev::writeWord(devAddr, 0x6e, tx_data);
tx_data = 0x102a;
I2Cdev::writeWord(devAddr, 0x70, tx_data);
tx_data = 0x6c1e;
I2Cdev::writeWord(devAddr, 0x71, tx_data);
tx_data = 0x0006;
// calibration
tx_data = 0x00A4;
I2Cdev::writeWord(devAddr, 0x30, tx_data);
delay(50);
tx_data = 0x00A6;
I2Cdev::writeWord(devAddr, 0x30, tx_data);
delay(100);
tx_data = 0x0006;
I2Cdev::writeWord(devAddr, 0x30, tx_data);
delay(10);
// continue default setup in 12.5kHz mode
tx_data = 0x1100;
I2Cdev::writeWord(devAddr, 0x15, tx_data); // tuning bit
tx_data = 0x4495;
I2Cdev::writeWord(devAddr, 0x32, tx_data); // agc target power
tx_data = 0x40C3;
I2Cdev::writeWord(devAddr, 0x3A, tx_data); // modu_det_sel sq setting
tx_data = 0x0F1E;
I2Cdev::writeWord(devAddr, 0x3C, tx_data); // pk_det_thr sq setting
tx_data = 0x28D0;
I2Cdev::writeWord(devAddr, 0x3F, tx_data); // pk_det_thr sq setting
tx_data = 0x20BE;
I2Cdev::writeWord(devAddr, 0x48, tx_data); // pk_det_thr sq setting
tx_data = 0x0A50;
I2Cdev::writeWord(devAddr, 0x59, tx_data); // Tx FM Deviation
tx_data = 0x1425; //0x0A10;
I2Cdev::writeWord(devAddr, 0x62, tx_data); // Modu_det_thresh (sq setting)
tx_data = 0x2494;
I2Cdev::writeWord(devAddr, 0x65, tx_data); // setting th_sif for SQ rssi detect
tx_data = 0x2494;
I2Cdev::writeWord(devAddr, 0x66, tx_data); // setting th_sif for SQ rssi detect
// AGC gain table settings
// the rest of these settings are to upper register addresses
// set 0x7F to 1 to write to them
tx_data = 0x0001;
I2Cdev::writeWord(devAddr, 0x7F, tx_data);
tx_data = 0x0014;
I2Cdev::writeWord(devAddr, 0x06, tx_data);
tx_data = 0x020C;
I2Cdev::writeWord(devAddr, 0x07, tx_data);
tx_data = 0x0214;
I2Cdev::writeWord(devAddr, 0x08, tx_data);
tx_data = 0x030C;
I2Cdev::writeWord(devAddr, 0x09, tx_data);
tx_data = 0x0314;
I2Cdev::writeWord(devAddr, 0x0A, tx_data);
tx_data = 0x0324;
I2Cdev::writeWord(devAddr, 0x0B, tx_data);
tx_data = 0x0344;
I2Cdev::writeWord(devAddr, 0x0C, tx_data);
tx_data = 0x1344;
I2Cdev::writeWord(devAddr, 0x0D, tx_data);
tx_data = 0x1B44;
I2Cdev::writeWord(devAddr, 0x0E, tx_data);
tx_data = 0x3F44;
I2Cdev::writeWord(devAddr, 0x0F, tx_data);
tx_data = 0xE0EB;
I2Cdev::writeWord(devAddr, 0x12, tx_data);
// done writing to upper page addresses, so set 0x7F back
tx_data = 0x0000;
I2Cdev::writeWord(devAddr, 0x7F, tx_data);
delay(100);
// setup default values
setFrequency(446000);
setVolume1(0xF);
setVolume2(0xF);
//setVolume1(0xF);
//setVolume2(0xF);
setModeReceive();
setTxSourceMic();
setSQLoThresh(80);
@ -285,10 +288,8 @@ void HamShield::initialize() {
* @return True if connection is valid, false otherwise
*/
bool HamShield::testConnection() {
I2Cdev::readWord(devAddr, 0x09, radio_i2c_buf);
// TODO: find a device ID reg I can use
// 03ac or 032c
return (radio_i2c_buf[0] == 0x03AC || radio_i2c_buf[0] == 0x32C);
I2Cdev::readWord(devAddr, 0x00, radio_i2c_buf);
return radio_i2c_buf[0] == 0x1846;
}
@ -358,6 +359,7 @@ void HamShield::setNoFilters() {
setGpioHi(2); // turn off VHF
}
/*
// band
// 00 - 400-520MHz
// 10 - 200-260MHz
@ -383,7 +385,9 @@ uint16_t HamShield::getBand(){
I2Cdev::readBitsW(devAddr, A1846S_BAND_SEL_REG, A1846S_BAND_SEL_BIT, A1846S_BAND_SEL_LENGTH, radio_i2c_buf);
return radio_i2c_buf[0];
}
*/
/*
// xtal frequency (kHz)
// 12-14MHz crystal: this reg is set to crystal freq_khz
// 24-28MHz crystal: this reg is set to crystal freq_khz / 2
@ -391,11 +395,12 @@ void HamShield::setXtalFreq(uint16_t freq_kHz){
I2Cdev::writeWord(devAddr, A1846S_XTAL_FREQ_REG, freq_kHz);
}
uint16_t HamShield::getXtalFreq(){
I2Cdev::readWord(devAddr, A1846S_FREQ_HI_REG, radio_i2c_buf);
I2Cdev::readWord(devAddr, A1846S_XTAL_FREQ_REG, radio_i2c_buf);
return radio_i2c_buf[0];
}
// adclk frequency (kHz)
// 12-14MHz crystal: this reg is set to crystal freq_khz / 2
// 24-28MHz crystal: this reg is set to crystal freq_khz / 4
@ -407,15 +412,16 @@ uint16_t HamShield::getAdcClkFreq(){
I2Cdev::readWord(devAddr, A1846S_ADCLK_FREQ_REG, radio_i2c_buf);
return radio_i2c_buf[0];
}
*/
// clk mode
// 12-14MHz: set to 1
// 24-28MHz: set to 0
void HamShield::setClkMode(bool LFClk){
// include upper bits as default values
uint16_t tx_data = 0x0F11; // NOTE: should this be 0fd1 or 0f11? Programming guide and setup guide disagree
uint16_t tx_data = 0x0FD1;
if (!LFClk) {
tx_data = 0x0F10;
tx_data = 0x0FD0;
}
I2Cdev::writeWord(devAddr, A1846S_CLK_MODE_REG, tx_data);
@ -433,6 +439,8 @@ bool HamShield::getClkMode(){
// TX/RX control
// TODO: create a 25kHz setup option as well as 12.5kHz (as is implemented now)
/*
// channel mode
// 11 - 25kHz channel
// 00 - 12.5kHz channel
@ -444,6 +452,7 @@ uint16_t HamShield::getChanMode(){
I2Cdev::readBitsW(devAddr, A1846S_CTL_REG, A1846S_CHAN_MODE_BIT, A1846S_CHAN_MODE_LENGTH, radio_i2c_buf);
return radio_i2c_buf[0];
}
*/
// choose tx or rx
void HamShield::setTX(bool on_noff){
@ -453,19 +462,16 @@ void HamShield::setTX(bool on_noff){
// For RF6886:
// first turn on power
// set RX output on
// set RX output off
setGpioHi(4); // remember that RX and TX are active low
// set TX output off
// set TX output on
setGpioLow(5); // remember that RX and TX are active low
// then turn on VREG (PWM output)
// then apply RF signal
setRfPower(9); // figure out a good default number (or don't set a default)
setRfPower(9); // figure out a good default number (TODO: or don't set a default)
}
// todo: make sure gpio are set correctly after this
I2Cdev::writeBitW(devAddr, A1846S_CTL_REG, A1846S_TX_MODE_BIT, on_noff);
}
bool HamShield::getTX(){
I2Cdev::readBitW(devAddr, A1846S_CTL_REG, A1846S_TX_MODE_BIT, radio_i2c_buf);
@ -478,7 +484,7 @@ void HamShield::setRX(bool on_noff){
setTX(false);
// set TX output off
setGpioHi(5); // remember that RX and TX are active low
setGpioHiZ(5); // remember that RX and TX are active low
// set RX output on
setGpioLow(4); // remember that RX and TX are active low
}
@ -491,15 +497,16 @@ bool HamShield::getRX(){
}
void HamShield::setModeTransmit(){
// check to see if we should allow them to do this
if(restrictions == true) {
if((radio_frequency > 139999) & (radio_frequency < 148001)) { setRX(false); setTX(true); }
if((radio_frequency > 218999) & (radio_frequency < 225001)) { setRX(false); setTX(true); }
if((radio_frequency > 419999) & (radio_frequency < 450001)) { setRX(false); setTX(true); }
} else {
// turn off rx, turn on tx
setRX(false); // break before make
setTX(true); }
// check to see if we should allow them to do this
if(restrictions == true) {
if((radio_frequency > 139999) & (radio_frequency < 148001)) { setRX(false); setTX(true); }
if((radio_frequency > 218999) & (radio_frequency < 225001)) { setRX(false); setTX(true); }
if((radio_frequency > 419999) & (radio_frequency < 450001)) { setRX(false); setTX(true); }
} else {
// turn off rx, turn on tx
setRX(false); // break before make
setTX(true);
}
}
void HamShield::setModeReceive(){
// turn on rx, turn off tx
@ -513,33 +520,35 @@ void HamShield::setModeOff(){
}
// set tx source
// 00 - Mic source
// 01 - sine source from tone2
// 10 - tx code from GPIO1 code_in (gpio1<1:0> must be set to 01)
// 11 - no tx source
// 000 - Nothing
// 001 - sine source from tone1
// 010 - sine source from tone2
// 011 - sine source from tone1 and tone2
// 100 - mic
void HamShield::setTxSource(uint16_t tx_source){
I2Cdev::writeBitsW(devAddr, A1846S_TX_VOICE_REG, A1846S_VOICE_SEL_BIT, A1846S_VOICE_SEL_LENGTH, tx_source);
}
void HamShield::setTxSourceMic(){
setTxSource(0);
setTxSource(4);
}
void HamShield::setTxSourceSine(){
void HamShield::setTxSourceTone1(){
setTxSource(1);
}
void HamShield::setTxSourceCode(){
// note, also set GPIO1 to 01
setGpioMode(1, 1);
void HamShield::setTxSourceTone2(){
setTxSource(2);
}
void HamShield::setTxSourceNone(){
void HamShield::setTxSourceTones(){
setTxSource(3);
}
void HamShield::setTxSourceNone(){
setTxSource(0);
}
uint16_t HamShield::getTxSource(){
I2Cdev::readBitsW(devAddr, A1846S_TX_VOICE_REG, A1846S_VOICE_SEL_BIT, A1846S_VOICE_SEL_LENGTH, radio_i2c_buf);
return radio_i2c_buf[0];
}
/*
// set PA_bias voltage
// 000000: 1.01V
// 000001:1.05V
@ -556,7 +565,7 @@ uint16_t HamShield::getPABiasVoltage(){
I2Cdev::readBitsW(devAddr, A1846S_PABIAS_REG, A1846S_PABIAS_BIT, A1846S_PABIAS_LENGTH, radio_i2c_buf);
return radio_i2c_buf[0];
}
*/
// Subaudio settings
// TX and RX code
/*
@ -988,10 +997,10 @@ bool HamShield::getPreDeEmphEnabled(){
// Read Only Status Registers
int16_t HamShield::readRSSI(){
I2Cdev::readWord(devAddr, A1846S_RSSI_REG, radio_i2c_buf);
I2Cdev::readBitsW(devAddr, A1846S_RSSI_REG, A1846S_RSSI_BIT, A1846S_RSSI_LENGTH, radio_i2c_buf);
int16_t rssi = (radio_i2c_buf[0] & 0x3FF) / 8 - 135;
return rssi; // only need lowest 10 bits
int16_t rssi = (radio_i2c_buf[0] & 0x3FF) - 137;
return rssi;
}
uint16_t HamShield::readVSSI(){
I2Cdev::readWord(devAddr, A1846S_VSSI_REG, radio_i2c_buf);
@ -1012,6 +1021,7 @@ uint16_t HamShield::readDTMFCode(){
return radio_i2c_buf[0];
}
void HamShield::setRfPower(uint8_t pwr) {
// using loop reference voltage input to op-amp
@ -1027,24 +1037,26 @@ void HamShield::setRfPower(uint8_t pwr) {
}
bool HamShield::frequency(uint32_t freq_khz) {
//TODO: there are several "special" frequencies that require extra setup of the AU1846
if((freq_khz >= 137000) && (freq_khz <= 174000)) {
setVHF();
setBand(3); // 0b11 is 134-174MHz
//setBand(3); // 0b11 is 134-174MHz
setFrequency(freq_khz);
return true;
}
if((freq_khz >= 200000) && (freq_khz <= 260000)) {
setVHF();
setBand(2); // 10 is 200-260MHz
//setBand(2); // 10 is 200-260MHz
setFrequency(freq_khz);
return true;
}
if((freq_khz >= 400000) && (freq_khz <= 520000)) {
setUHF();
setBand(00); // 00 is 400-520MHz
//setBand(00); // 00 is 400-520MHz
setFrequency(freq_khz);
return true;
}
@ -1443,3 +1455,13 @@ void HamShield::AFSKOut(char buffer[80]) {
}
*/
// This is the ADC timer handler. When enabled, we'll see what we're supposed
// to be reading/handling, and trigger those on the main object.
/*ISR(ADC_vect) {
TIFR1 = _BV(ICF1); // Clear the timer flag
if(HamShield::sHamShield->afsk.enabled()) {
HamShield::sHamShield->afsk.timer();
}
}*/

View File

@ -9,6 +9,9 @@
#define _HAMSHIELD_H_
#include "I2Cdev_rda.h"
#include "SimpleFIFO.h"
#include "AFSK.h"
#include "DDS.h"
#include <avr/pgmspace.h>
// HamShield constants
@ -19,6 +22,8 @@
#define HAMSHIELD_PWM_PIN 11 // Pin assignment for PWM output
#define HAMSHIELD_EMPTY_CHANNEL_RSSI -110 // Default threshold where channel is considered "clear"
#define HAMSHIELD_AFSK_RX_FIFO_LEN 16
// button modes
#define PTT_MODE 1
#define RESET_MODE 2
@ -32,14 +37,14 @@
#define A1846S_CTL_REG 0x30 // control register
#define A1846S_CLK_MODE_REG 0x04 // clk_mode
#define A1846S_PABIAS_REG 0x0A // control register for bias voltage
#define A1846S_BAND_SEL_REG 0x0F // band_sel register <1:0>
//#define A1846S_BAND_SEL_REG 0x0F // band_sel register <1:0>
#define A1846S_GPIO_MODE_REG 0x1F // GPIO mode select register
#define A1846S_FREQ_HI_REG 0x29 // freq<29:16>
#define A1846S_FREQ_LO_REG 0x2A // freq<15:0>
#define A1846S_XTAL_FREQ_REG 0x2B // xtal_freq<15:0>
#define A1846S_ADCLK_FREQ_REG 0x2C // adclk_freq<15:0>
//#define A1846S_XTAL_FREQ_REG 0x2B // xtal_freq<15:0>
//#define A1846S_ADCLK_FREQ_REG 0x2C // adclk_freq<15:0>
#define A1846S_INT_MODE_REG 0x2D // interrupt enables
#define A1846S_TX_VOICE_REG 0x3C // tx voice control reg
#define A1846S_TX_VOICE_REG 0x3A // tx voice control reg
#define A1846S_TH_H_VOX_REG 0x41 // register holds vox high (open) threshold bits
#define A1846S_TH_L_VOX_REG 0x42 // register holds vox low (shut) threshold bits
#define A1846S_FM_DEV_REG 0x43 // register holds fm deviation settings
@ -53,8 +58,8 @@
#define A1846S_SQ_OUT_SEL_REG 0x54 // see sq
#define A1846S_EMPH_FILTER_REG 0x58
#define A1846S_FLAG_REG 0x5C // holds flags for different statuses
#define A1846S_RSSI_REG 0x5F // holds RSSI (unit 1/8dB)
#define A1846S_VSSI_REG 0x60 // holds VSSI (unit mV)
#define A1846S_RSSI_REG 0x1B // holds RSSI (unit 1dB)
#define A1846S_VSSI_REG 0x1A // holds VSSI (unit mV)
#define A1846S_DTMF_CTL_REG 0x63 // see dtmf
#define A1846S_DTMF_C01_REG 0x66 // holds frequency value for c0 and c1
#define A1846S_DTMF_C23_REG 0x67 // holds frequency value for c2 and c3
@ -93,8 +98,8 @@
#define A1846S_PADRV_LENGTH 4
// Bitfields for A1846S_BAND_SEL_REG
#define A1846S_BAND_SEL_BIT 7 // band_sel<1:0>
#define A1846S_BAND_SEL_LENGTH 2
//#define A1846S_BAND_SEL_BIT 7 // band_sel<1:0>
//#define A1846S_BAND_SEL_LENGTH 2
// Bitfields for RDA1864_GPIO_MODE_REG
#define RDA1864_GPIO7_MODE_BIT 15 // <1:0> 00=hi-z,01=vox,10=low,11=hi
@ -127,8 +132,8 @@
#define A1846S_VOX_INT_BIT 0 // vox uint16_t enable
// Bitfields for A1846S_TX_VOICE_REG
#define A1846S_VOICE_SEL_BIT 15 //voice_sel<1:0>
#define A1846S_VOICE_SEL_LENGTH 2
#define A1846S_VOICE_SEL_BIT 14 //voice_sel<1:0>
#define A1846S_VOICE_SEL_LENGTH 3
// Bitfields for A1846S_TH_H_VOX_REG
#define A1846S_TH_H_VOX_BIT 14 // th_h_vox<14:0>
@ -181,8 +186,8 @@
#define A1846S_VOX_FLAG_BIT 0 // vox out from dsp
// Bitfields for A1846S_RSSI_REG
#define A1846S_RSSI_BIT 9 // RSSI readings <9:0>
#define A1846S_RSSI_LENGTH 10
#define A1846S_RSSI_BIT 15 // RSSI readings <9:0>
#define A1846S_RSSI_LENGTH 8
// Bitfields for A1846S_VSSI_REG
#define A1846S_VSSI_BIT 14 // voice signal strength indicator <14:0> (unit mV)
@ -329,8 +334,9 @@ class HamShield {
// 11 - no tx source
void setTxSource(uint16_t tx_source);
void setTxSourceMic();
void setTxSourceSine();
void setTxSourceCode();
void setTxSourceTone1();
void setTxSourceTone2();
void setTxSourceTones();
void setTxSourceNone();
uint16_t getTxSource();
@ -534,6 +540,13 @@ class HamShield {
bool parityCalc(int code);
// void AFSKOut(char buffer[80]);
// AFSK routines
bool AFSKStart();
bool AFSKEnabled() { return afsk.enabled(); }
bool AFSKStop();
bool AFSKOut(const char *);
class AFSK afsk;
private:
uint8_t devAddr;
@ -545,7 +558,8 @@ class HamShield {
uint32_t MURS[];
uint32_t WX[];
public:
// public singleton for ISRs to reference
public:
static HamShield *sHamShield; // HamShield singleton, used for ISRs mostly
// int8_t A1846S::readWord(uint8_t devAddr, uint8_t regAddr, uint16_t *data, uint16_t timeout);

88
KISS.cpp Normal file
View File

@ -0,0 +1,88 @@
#include <HamShield.h>
#include "AFSK.h"
#include "KISS.h"
//AFSK::Packet kissPacket;
bool inFrame = false;
uint8_t kissBuffer[PACKET_MAX_LEN];
uint16_t kissLen = 0;
// Inside the KISS loop, we basically wait for data to come in from the
// KISS equipment, and look if we have anything to relay along
void KISS::loop() {
static bool currentlySending = false;
if(radio->afsk.decoder.read() || radio->afsk.rxPacketCount()) {
// A true return means something was put onto the packet FIFO
// If we actually have data packets in the buffer, process them all now
while(radio->afsk.rxPacketCount()) {
AFSK::Packet *packet = radio->afsk.getRXPacket();
if(packet) {
writePacket(packet);
AFSK::PacketBuffer::freePacket(packet);
}
}
}
// Check if we have incoming data to turn into a packet
if(io->available()) {
uint8_t c = (uint8_t)io->read();
if(c == KISS_FEND) {
if(inFrame && kissLen > 0) {
int i;
AFSK::Packet *packet = AFSK::PacketBuffer::makePacket(PACKET_MAX_LEN);
packet->start();
for(i = 0; i < kissLen; i++) {
packet->append(kissBuffer[i]);
}
packet->finish();
radio->afsk.encoder.putPacket(packet);
}
kissLen = 0;
inFrame = false;
}
// We're inside the boundaries of a FEND
if(inFrame) {
// Unescape the incoming data
if(c == KISS_FESC) {
c = io->read();
if(c == KISS_TFESC) {
c = KISS_FESC;
} else {
c = KISS_FEND;
}
}
kissBuffer[kissLen++] = c;
}
if(kissLen == 0 && c != KISS_FEND) {
if((c & 0xf) == 0) // First byte<3:0> should be a 0, otherwise we're having options
inFrame = true;
}
}
if(radio->afsk.txReady()) {
radio->setModeTransmit();
currentlySending = true;
if(!radio->afsk.txStart()) { // Unable to start for some reason
radio->setModeReceive();
currentlySending = false;
}
}
if(currentlySending && radio->afsk.encoder.isDone()) {
radio->setModeReceive();
currentlySending = false;
}
}
void KISS::writePacket(AFSK::Packet *p) {
int i;
io->write(KISS_FEND);
io->write((uint8_t)0); // Host to TNC port identifier
for(i = 0; i < p->len-2; i++) {
char c = p->getByte(i);
if(c == KISS_FEND || c == KISS_FESC) {
io->write(KISS_FESC);
io->write((c==KISS_FEND?KISS_TFEND:KISS_TFESC));
} else {
io->write(c);
}
}
io->write(KISS_FEND);
}

35
KISS.h Normal file
View File

@ -0,0 +1,35 @@
#ifndef _KISS_H_
#define _KISS_H_
#include <HamShield.h>
#include "AFSK.h"
#define KISS_FEND 0xC0
#define KISS_FESC 0xDB
#define KISS_TFEND 0xDC
#define KISS_TFESC 0xDD
class KISS {
public:
KISS(Stream *_io, HamShield *h, DDS *d) : io(_io), radio(h), dds(d) {}
bool read();
void writePacket(AFSK::Packet *);
void loop();
inline void isr() {
static uint8_t tcnt = 0;
TIFR1 = _BV(ICF1); // Clear the timer flag
dds->clockTick();
if(++tcnt == (DDS_REFCLK_DEFAULT/9600)) {
PORTD |= _BV(2); // Diagnostic pin (D2)
radio->afsk.timer();
tcnt = 0;
}
PORTD &= ~(_BV(2));
}
private:
Stream *io;
HamShield *radio;
DDS *dds;
};
#endif /* _KISS_H_ */

89
SimpleFIFO.h Normal file
View File

@ -0,0 +1,89 @@
#ifndef SimpleFIFO_h
#define SimpleFIFO_h
/*
||
|| @file SimpleFIFO.h
|| @version 1.2
|| @author Alexander Brevig
|| @contact alexanderbrevig@gmail.com
||
|| @description
|| | A simple FIFO class, mostly for primitive types but can be used with classes if assignment to int is allowed
|| | This FIFO is not dynamic, so be sure to choose an appropriate size for it
|| #
||
|| @license
|| | Copyright (c) 2010 Alexander Brevig
|| | This library is free software; you can redistribute it and/or
|| | modify it under the terms of the GNU Lesser General Public
|| | License as published by the Free Software Foundation; version
|| | 2.1 of the License.
|| |
|| | This library is distributed in the hope that it will be useful,
|| | but WITHOUT ANY WARRANTY; without even the implied warranty of
|| | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|| | Lesser General Public License for more details.
|| |
|| | You should have received a copy of the GNU Lesser General Public
|| | License along with this library; if not, write to the Free Software
|| | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|| #
||
*/
template<typename T, int rawSize>
class SimpleFIFO {
public:
const int size; //speculative feature, in case it's needed
SimpleFIFO();
T dequeue(); //get next element
bool enqueue( T element ); //add an element
T peek() const; //get the next element without releasing it from the FIFO
void flush(); //[1.1] reset to default state
//how many elements are currently in the FIFO?
unsigned char count() { return numberOfElements; }
private:
#ifndef SimpleFIFO_NONVOLATILE
volatile unsigned char numberOfElements;
volatile unsigned char nextIn;
volatile unsigned char nextOut;
volatile T raw[rawSize];
#else
unsigned char numberOfElements;
unsigned char nextIn;
unsigned char nextOut;
T raw[rawSize];
#endif
};
template<typename T, int rawSize>
SimpleFIFO<T,rawSize>::SimpleFIFO() : size(rawSize) {
flush();
}
template<typename T, int rawSize>
bool SimpleFIFO<T,rawSize>::enqueue( T element ) {
if ( count() >= rawSize ) { return false; }
numberOfElements++;
nextIn %= size;
raw[nextIn] = element;
nextIn++; //advance to next index
return true;
}
template<typename T, int rawSize>
T SimpleFIFO<T,rawSize>::dequeue() {
numberOfElements--;
nextOut %= size;
return raw[ nextOut++];
}
template<typename T, int rawSize>
T SimpleFIFO<T,rawSize>::peek() const {
return raw[ nextOut % size];
}
template<typename T, int rawSize>
void SimpleFIFO<T,rawSize>::flush() {
nextIn = nextOut = numberOfElements = 0;
}
#endif

View File

@ -0,0 +1,94 @@
#include <HamShield.h>
#include <Wire.h>
HamShield radio;
DDS dds;
#define DON(p) PORTD |= _BV((p))
#define DOFF(p) PORTD &= ~(_BV((p)))
void setup() {
Serial.begin(9600);
Wire.begin();
pinMode(2, OUTPUT);
pinMode(3, OUTPUT);
pinMode(4, OUTPUT);
pinMode(5, OUTPUT);
pinMode(6, OUTPUT);
pinMode(7, OUTPUT);
Serial.println(F("Radio test connection"));
Serial.println(radio.testConnection(), DEC);
Serial.println(F("Initialize"));
delay(100);
radio.initialize();
Serial.println(F("Frequency"));
delay(100);
radio.setVHF();
radio.frequency(145010);
//radio.setRfPower(0);
delay(100);
dds.start();
delay(100);
radio.afsk.start(&dds);
pinMode(11, INPUT); // Bodge for now, as pin 3 is hotwired to pin 11
delay(100);
dds.setFrequency(0);
dds.on();
dds.setAmplitude(255);
I2Cdev::writeWord(A1846S_DEV_ADDR_SENLOW, 0x44, 0b0000011111111111);
//I2Cdev::writeWord(A1846S_DEV_ADDR_SENLOW, 0x53, 0x0);
//I2Cdev::writeWord(A1846S_DEV_ADDR_SENLOW, 0x32, 0xffff);
}
void loop() {
DON(6);
AFSK::Packet *packet = AFSK::PacketBuffer::makePacket(22 + 32);
packet->start();
packet->appendCallsign("VE6SLP",0);
packet->appendCallsign("VA6GA",15,true);
packet->appendFCS(0x03);
packet->appendFCS(0xf0);
packet->print(F("Hello "));
packet->print(millis());
packet->println(F("\r\nThis is a test of the HamShield Kickstarter prototype. de VE6SLP"));
packet->finish();
bool ret = radio.afsk.putTXPacket(packet);
if(radio.afsk.txReady()) {
Serial.println(F("txReady"));
radio.setModeTransmit();
if(radio.afsk.txStart()) {
Serial.println(F("txStart"));
} else {
Serial.println(F("Tx Start failure"));
radio.setModeReceive();
}
}
// Wait 2 seconds before we send our beacon again.
Serial.println("tick");
// Wait up to 2.5 seconds to finish sending, and stop transmitter.
// TODO: This is hackery.
DOFF(6);
for(int i = 0; i < 500; i++) {
if(radio.afsk.encoder.isDone())
break;
delay(50);
Serial.println("Not done");
}
Serial.println("Done sending");
delay(100);
radio.setModeReceive();
delay(2000);
}
ISR(ADC_vect) {
TIFR1 = _BV(ICF1); // Clear the timer flag
DON(4);
dds.clockTick();
DON(5);
radio.afsk.timer();
DOFF(5);
DOFF(4);
}

View File

@ -0,0 +1,67 @@
#include <HamShield.h>
#include <Wire.h>
HamShield radio;
DDS dds;
void setup() {
Serial.begin(9600);
Wire.begin();
pinMode(2, OUTPUT);
pinMode(3, OUTPUT);
Serial.println(F("Radio test connection"));
Serial.println(radio.testConnection(), DEC);
Serial.println(F("Initialize"));
delay(100);
radio.initialize();
radio.frequency(145010);
radio.setVHF();
radio.setSQOff();
I2Cdev::writeWord(A1846S_DEV_ADDR_SENLOW, 0x30, 0x06);
I2Cdev::writeWord(A1846S_DEV_ADDR_SENLOW, 0x30, 0x26);
I2Cdev::writeWord(A1846S_DEV_ADDR_SENLOW, 0x44, 0b11111111);
Serial.println(F("Frequency"));
delay(100);
Serial.print(F("Squelch(H/L): "));
Serial.print(radio.getSQHiThresh());
Serial.print(F(" / "));
Serial.println(radio.getSQLoThresh());
radio.setModeReceive();
Serial.print(F("RX? "));
Serial.println(radio.getRX());
Serial.println(F("DDS Start"));
delay(100);
dds.start();
Serial.println(F("AFSK start"));
delay(100);
radio.afsk.start(&dds);
Serial.println(F("Starting..."));
pinMode(11, INPUT); // Bodge for now, as pin 3 is hotwired to pin 11
delay(100);
dds.setAmplitude(255);
}
uint32_t last = 0;
void loop() {
if(radio.afsk.decoder.read() || radio.afsk.rxPacketCount()) {
// A true return means something was put onto the packet FIFO
// If we actually have data packets in the buffer, process them all now
while(radio.afsk.rxPacketCount()) {
AFSK::Packet *packet = radio.afsk.getRXPacket();
Serial.print(F("Packet: "));
if(packet) {
packet->printPacket(&Serial);
AFSK::PacketBuffer::freePacket(packet);
}
}
}
}
ISR(ADC_vect) {
static uint8_t tcnt = 0;
TIFR1 = _BV(ICF1); // Clear the timer flag
PORTD |= _BV(2); // Diagnostic pin (D2)
//dds.clockTick();
radio.afsk.timer();
PORTD &= ~(_BV(2)); // Pin D2 off again
}

View File

@ -0,0 +1,259 @@
#define DDS_REFCLK_DEFAULT 38400
#define DDS_REFCLK_OFFSET 0
#define DDS_DEBUG_SERIAL
#include <HamShield.h>
#include <Wire.h>
HamShield radio;
DDS dds;
void setup() {
Serial.begin(9600);
Wire.begin();
radio.initialize();
radio.setVHF();
radio.setRfPower(0);
radio.setFrequency(145050);
pinMode(2, OUTPUT);
pinMode(3, OUTPUT);
pinMode(11, INPUT);
dds.start();
dds.setFrequency(1200);
dds.on();
radio.bypassPreDeEmph();
}
enum Sets {
SET_REF,
SET_TONE,
SET_AMPLITUDE,
SET_ADC_HALF,
SET_OFFSET
} setting = SET_TONE;
char freqBuffer[8];
char *freqBufferPtr = freqBuffer;
uint16_t lastFreq = 1200;
volatile uint16_t recordedPulseLength;
volatile bool recordedPulse = false;
volatile bool listening = false;
volatile uint8_t maxADC = 0, minADC = 255, adcHalf = 40;
void loop() {
static uint16_t samples = 0;
static uint16_t pulse;
static uint32_t lastOutput = 0;
static float pulseFloat = 0.0;
if(recordedPulse) {
uint32_t pulseAveraging;
uint16_t tmpPulse;
cli();
recordedPulse = false;
tmpPulse = recordedPulseLength;
sei();
if(samples++ == 0) {
pulse = tmpPulse;
//pulseFloat = tmpPulse;
} else {
pulseAveraging = (pulse + tmpPulse) >> 1;
pulse = pulseAveraging;
pulseFloat = pulseFloat + 0.01*((float)pulse-pulseFloat);
}
if((lastOutput + 1000) < millis()) {
Serial.print(F("Pulse: "));
Serial.println(pulse);
Serial.print(F("Last: "));
Serial.println(tmpPulse);
Serial.print(F("Samples: "));
Serial.println(samples);
Serial.print(F("ADC M/M: "));
Serial.print(minADC); minADC = 255;
Serial.print(F(" / "));
Serial.println(maxADC); maxADC = 0;
Serial.print(F("Freq: "));
// F = 1/(pulse*(1/ref))
// F = ref/pulse
Serial.print((float)((float)dds.getReferenceClock()+(float)dds.getReferenceOffset())/(float)pulse);
Serial.print(F(" / "));
Serial.print((float)((float)dds.getReferenceClock()+(float)dds.getReferenceOffset())/pulseFloat);
Serial.print(F(" / "));
Serial.println(pulseFloat);
Serial.print(F("Freq2: "));
// F = 1/(pulse*(1/ref))
// F = ref/pulse
Serial.print((float)dds.getReferenceClock()/(float)pulse);
Serial.print(F(" / "));
Serial.println((float)dds.getReferenceClock()/pulseFloat);
samples = 0;
lastOutput = millis();
}
}
while(Serial.available()) {
char c = Serial.read();
Serial.print(c);
switch(c) {
case 'h':
Serial.println(F("Commands:"));
Serial.println(F("RefClk: u = +10, U = +100, r XXXX = XXXX"));
Serial.println(F(" d = -10, D = -100"));
Serial.println(F("Offset: s XXX = Set refclk offset"));
Serial.println(F("Radio: T = transmit, R = receive"));
Serial.println(F("Tone: t XXXX = XXXX Hz"));
Serial.println(F("Amp.: a XXX = XXX out of 255"));
Serial.println(F("DDS: o = On, O = Off"));
Serial.println(F("Input: l = Determine received frequency, L = stop"));
Serial.println(F("ADC: m XXX = Set ADC midpoint (zero crossing level)"));
Serial.println(F("ie. a 31 = 32/255 amplitude, r38400 sets 38400Hz refclk"));
Serial.println("> ");
break;
case 'u':
dds.setReferenceClock(dds.getReferenceClock()+10);
dds.setFrequency(lastFreq);
dds.start();
Serial.println(F("RefClk + 10 = "));
Serial.println(dds.getReferenceClock());
Serial.println("> ");
break;
case 'U':
dds.setReferenceClock(dds.getReferenceClock()+100);
dds.setFrequency(lastFreq);
dds.start();
Serial.println(F("RefClk + 100 = "));
Serial.println(dds.getReferenceClock());
Serial.println("> ");
break;
case 'd':
dds.setReferenceClock(dds.getReferenceClock()-10);
dds.setFrequency(lastFreq);
dds.start();
Serial.println(F("RefClk - 10 = "));
Serial.println(dds.getReferenceClock());
Serial.println("> ");
break;
case 'D':
dds.setReferenceClock(dds.getReferenceClock()-100);
dds.setFrequency(lastFreq);
dds.start();
Serial.println(F("RefClk - 100 = "));
Serial.println(dds.getReferenceClock());
Serial.println("> ");
break;
case 'l':
Serial.println(F("Start frequency listening, DDS off"));
dds.off();
listening = true;
lastOutput = millis();
Serial.println("> ");
break;
case 'L':
Serial.println(F("Stop frequency listening, DDS on"));
listening = false;
samples = 0;
dds.on();
Serial.println("> ");
break;
case 'T':
Serial.println(F("Radio transmit"));
radio.setModeTransmit();
Serial.println("> ");
break;
case 'R':
Serial.println(F("Radio receive"));
radio.setModeReceive();
Serial.println("> ");
break;
case 'r':
setting = SET_REF;
break;
case 't':
setting = SET_TONE;
break;
case 'a':
setting = SET_AMPLITUDE;
break;
case 'm':
setting = SET_ADC_HALF;
break;
case 's':
setting = SET_OFFSET;
break;
case 'o':
dds.on();
Serial.println("> ");
break;
case 'O':
dds.off();
Serial.println("> ");
break;
default:
if(c == '-' || (c >= '0' && c <= '9')) {
*freqBufferPtr = c;
freqBufferPtr++;
}
if((c == '\n' || c == '\r') && freqBufferPtr != freqBuffer) {
*freqBufferPtr = '\0';
freqBufferPtr = freqBuffer;
uint16_t freq = atoi(freqBuffer);
if(setting == SET_REF) {
dds.setReferenceClock(freq);
dds.setFrequency(lastFreq);
dds.start();
Serial.print(F("New Reference Clock: "));
Serial.println(dds.getReferenceClock());
} else if(setting == SET_TONE) {
dds.setFrequency(freq);
lastFreq = freq;
Serial.print(F("New Tone: "));
Serial.println(freq);
} else if(setting == SET_AMPLITUDE) {
dds.setAmplitude((uint8_t)(freq&0xFF));
Serial.print(F("New Amplitude: "));
Serial.println((uint8_t)(freq&0xFF));
} else if(setting == SET_ADC_HALF) {
adcHalf = freq&0xFF;
Serial.print(F("ADC midpoint set to "));
Serial.println((uint8_t)(freq&0xFF));
} else if(setting == SET_OFFSET) {
dds.setReferenceOffset((int16_t)atoi(freqBuffer));
dds.setFrequency(lastFreq);
Serial.print(F("Refclk offset: "));
Serial.println(dds.getReferenceOffset());
}
Serial.println("> ");
}
break;
}
}
}
ISR(ADC_vect) {
static uint16_t pulseLength = 0;
static uint8_t lastADC = 127;
cli();
TIFR1 = _BV(ICF1);
PORTD |= _BV(2);
dds.clockTick();
sei();
if(listening) {
pulseLength++;
if(ADCH >= adcHalf && lastADC < adcHalf) {
// Zero crossing, upward
recordedPulseLength = pulseLength;
recordedPulse = true;
pulseLength = 0;
}
if(minADC > ADCH) {
minADC = ADCH;
}
if(maxADC < ADCH) {
maxADC = ADCH;
}
lastADC = ADCH;
}
PORTD &= ~_BV(2);
}

46
examples/DDS/DDS.ino Normal file
View File

@ -0,0 +1,46 @@
#define DDS_REFCLK_DEFAULT 9600
#include <HamShield.h>
#include <Wire.h>
HamShield radio;
DDS dds;
void setup() {
Wire.begin();
radio.initialize();
radio.setRfPower(0);
radio.setVHF();
radio.setFrequency(145060);
pinMode(2, OUTPUT);
pinMode(3, OUTPUT);
pinMode(11, INPUT);
radio.setModeTransmit();
dds.start();
dds.playWait(600, 3000);
dds.on();
//dds.setAmplitude(31);
}
void loop() {
dds.setFrequency(2200);
delay(1000);
dds.setFrequency(1200);
delay(1000);
}
#ifdef DDS_USE_ONLY_TIMER2
ISR(TIMER2_OVF_vect) {
dds.clockTick();
}
#else // Use the ADC timer instead
ISR(ADC_vect) {
static unsigned char tcnt = 0;
TIFR1 = _BV(ICF1); // Clear the timer flag
if(++tcnt == 4) {
digitalWrite(2, HIGH);
tcnt = 0;
}
dds.clockTick();
digitalWrite(2, LOW);
}
#endif

View File

@ -28,6 +28,7 @@ void setup() {
Serial.println(result,DEC);
radio.initialize();
radio.setFrequency(446000);
radio.setModeReceive();
Serial.println("Entering gauges...");
tone(9,1000);
delay(2000);

36
examples/KISS/KISS.ino Normal file
View File

@ -0,0 +1,36 @@
#define DDS_REFCLK_DEFAULT 19200
#include <HamShield.h>
#include <Wire.h>
#include <KISS.h>
HamShield radio;
DDS dds;
KISS kiss(&Serial, &radio, &dds);
void setup() {
pinMode(2, OUTPUT);
pinMode(3, OUTPUT);
pinMode(11, INPUT);
Serial.begin(9600);
Wire.begin();
radio.initialize();
radio.setVHF();
radio.setSQOff();
radio.setFrequency(145010);
I2Cdev::writeWord(A1846S_DEV_ADDR_SENLOW, 0x30, 0x06);
I2Cdev::writeWord(A1846S_DEV_ADDR_SENLOW, 0x30, 0x26);
I2Cdev::writeWord(A1846S_DEV_ADDR_SENLOW, 0x44, 0b0000011111111111);
dds.start();
radio.afsk.start(&dds);
}
void loop() {
kiss.loop();
}
ISR(ADC_vect) {
kiss.isr();
}

View File

@ -0,0 +1,93 @@
#include <HamShield.h>
#include "varicode.h"
DDS dds;
void setup() {
Serial.begin(9600);
pinMode(11, OUTPUT);
pinMode(3, OUTPUT);
pinMode(2, OUTPUT);
// put your setup code here, to run once:
dds.setReferenceClock(32000);
dds.start();
dds.setFrequency(1000);
dds.on();
}
volatile bool sent = true;
volatile uint16_t bitsToSend = 0;
volatile uint8_t zeroCount = 0;
void sendChar(uint8_t c) {
uint16_t bits = varicode[c];
while((bits&0x8000)==0) {
bits<<=1;
}
while(!sent) {} //delay(32);
cli();
sent = false;
bitsToSend = bits;
sei();
while(!sent) {} //delay(32);
//PORTD &= ~_BV(2); // Diagnostic pin (D2)
}
char *string = "Why hello there, friend. Nice to meet you. Welcome to PSK31. 73, VE6SLP sk\r\n";
void loop() {
int i;
// put your main code here, to run repeatedly:
//for(i = 0; i<5; i++)
// sendChar(0);
// return;
for(i = 0; i < strlen(string); i++) {
sendChar(string[i]);
//Serial.println(string[i]);
}
}
const uint8_t amplitudeShape[41] = {
255, 241, 228, 215, 203, 191, 181, 171, 161, 152, 143, 135, 128, 121, 114, 107, 101, 96, 90, 85, 80, 76, 72, 68, 64, 60, 57, 54, 51, 48, 45, 42, 40, 38, 36, 34, 32, 30, 28, 27, 25
};
// This will trigger at 8kHz
ISR(ADC_vect) {
static uint8_t outer = 0;
static uint8_t tcnt = 0;
TIFR1 |= _BV(ICF1);
// Wave shaping
// TODO: Improve how this would perform.
//else if(tcnt > (255-64))
// dds.setAmplitude((255 - tcnt));
//else dds.setAmplitude(255);
if(tcnt < 81)
dds.setAmplitude(amplitudeShape[(81-tcnt)/2]);
if(tcnt > (255-81))
dds.setAmplitude(amplitudeShape[(tcnt-174)/2]);
dds.clockTick();
PORTD &= ~_BV(2);
if(outer++ == 3) {
outer = 0;
} else {
return;
}
if(tcnt++ == 0) { // Next bit
//PORTD ^= _BV(2); // Diagnostic pin (D2)
if(!sent) {
if((bitsToSend & 0x8000) == 0) {
zeroCount++;
dds.changePhaseDeg(+180);
} else {
zeroCount = 0;
}
bitsToSend<<=1;
if(zeroCount == 2) {
sent = true;
}
} else {
// Idle on zeroes
dds.changePhaseDeg(+180);
}
}
PORTD &= ~_BV(2);
}

View File

@ -0,0 +1,130 @@
const uint16_t varicode[] = {
0xAAC0, // ASCII = 0 1010101011
0xB6C0, // ASCII = 1 1011011011
0xBB40, // ASCII = 2 1011101101
0xDDC0, // ASCII = 3 1101110111
0xBAC0, // ASCII = 4 1011101011
0xD7C0, // ASCII = 5 1101011111
0xBBC0, // ASCII = 6 1011101111
0xBF40, // ASCII = 7 1011111101
0xBFC0, // ASCII = 8 1011111111
0xEF00, // ASCII = 9 11101111
0xE800, // ASCII = 10 11101
0xDBC0, // ASCII = 11 1101101111
0xB740, // ASCII = 12 1011011101
0xF800, // ASCII = 13 11111
0xDD40, // ASCII = 14 1101110101
0xEAC0, // ASCII = 15 1110101011
0xBDC0, // ASCII = 16 1011110111
0xBD40, // ASCII = 17 1011110101
0xEB40, // ASCII = 18 1110101101
0xEBC0, // ASCII = 19 1110101111
0xD6C0, // ASCII = 20 1101011011
0xDAC0, // ASCII = 21 1101101011
0xDB40, // ASCII = 22 1101101101
0xD5C0, // ASCII = 23 1101010111
0xDEC0, // ASCII = 24 1101111011
0xDF40, // ASCII = 25 1101111101
0xEDC0, // ASCII = 26 1110110111
0xD540, // ASCII = 27 1101010101
0xD740, // ASCII = 28 1101011101
0xEEC0, // ASCII = 29 1110111011
0xBEC0, // ASCII = 30 1011111011
0xDFC0, // ASCII = 31 1101111111
0x8000, // ASCII = ' ' 1
0xFF80, // ASCII = '!' 111111111
0xAF80, // ASCII = '"' 101011111
0xFA80, // ASCII = '#' 111110101
0xED80, // ASCII = '$' 111011011
0xB540, // ASCII = '%' 1011010101
0xAEC0, // ASCII = '&' 1010111011
0xBF80, // ASCII = ''' 101111111
0xFB00, // ASCII = '(' 11111011
0xF700, // ASCII = ')' 11110111
0xB780, // ASCII = '*' 101101111
0xEF80, // ASCII = '+' 111011111
0xEA00, // ASCII = ',' 1110101
0xD400, // ASCII = '-' 110101
0xAE00, // ASCII = '.' 1010111
0xD780, // ASCII = '/' 110101111
0xB700, // ASCII = '0' 10110111
0xBD00, // ASCII = '1' 10111101
0xED00, // ASCII = '2' 11101101
0xFF00, // ASCII = '3' 11111111
0xBB80, // ASCII = '4' 101110111
0xAD80, // ASCII = '5' 101011011
0xB580, // ASCII = '6' 101101011
0xD680, // ASCII = '7' 110101101
0xD580, // ASCII = '8' 110101011
0xDB80, // ASCII = '9' 110110111
0xF500, // ASCII = ':' 11110101
0xDE80, // ASCII = ';' 110111101
0xF680, // ASCII = '<' 111101101
0xAA00, // ASCII = '=' 1010101
0xEB80, // ASCII = '>' 111010111
0xABC0, // ASCII = '?' 1010101111
0xAF40, // ASCII = '@' 1010111101
0xFA00, // ASCII = 'A' 1111101
0xEB00, // ASCII = 'B' 11101011
0xAD00, // ASCII = 'C' 10101101
0xB500, // ASCII = 'D' 10110101
0xEE00, // ASCII = 'E' 1110111
0xDB00, // ASCII = 'F' 11011011
0xFD00, // ASCII = 'G' 11111101
0xAA80, // ASCII = 'H' 101010101
0xFE00, // ASCII = 'I' 1111111
0xFE80, // ASCII = 'J' 111111101
0xBE80, // ASCII = 'K' 101111101
0xD700, // ASCII = 'L' 11010111
0xBB00, // ASCII = 'M' 10111011
0xDD00, // ASCII = 'N' 11011101
0xAB00, // ASCII = 'O' 10101011
0xD500, // ASCII = 'P' 11010101
0xEE80, // ASCII = 'Q' 111011101
0xAF00, // ASCII = 'R' 10101111
0xDE00, // ASCII = 'S' 1101111
0xDA00, // ASCII = 'T' 1101101
0xAB80, // ASCII = 'U' 101010111
0xDA80, // ASCII = 'V' 110110101
0xAE80, // ASCII = 'W' 101011101
0xBA80, // ASCII = 'X' 101110101
0xBD80, // ASCII = 'Y' 101111011
0xAB40, // ASCII = 'Z' 1010101101
0xFB80, // ASCII = '[' 1111101110
0xF780, // ASCII = '\' 111101111
0xFD80, // ASCII = ']' 111111011
0xAFC0, // ASCII = '^' 1010111111
0xB680, // ASCII = '_' 101101101
0xB7C0, // ASCII = '`' 1011011111
0xB000, // ASCII = 'a' 1011
0xBE00, // ASCII = 'b' 1011111
0xBC00, // ASCII = 'c' 101111
0xB400, // ASCII = 'd' 101101
0xC000, // ASCII = 'e' 11
0xF400, // ASCII = 'f' 111101
0xB600, // ASCII = 'g' 1011011
0xAC00, // ASCII = 'h' 101011
0xD000, // ASCII = 'i' 1101
0xF580, // ASCII = 'j' 111101011
0xBF00, // ASCII = 'k' 10111111
0xD800, // ASCII = 'l' 11011
0xEC00, // ASCII = 'm' 111011
0xF000, // ASCII = 'n' 1111
0xE000, // ASCII = 'o' 111
0xFC00, // ASCII = 'p' 111111
0xDF80, // ASCII = 'q' 110111111
0xA800, // ASCII = 'r' 10101
0xB800, // ASCII = 's' 10111
0xA000, // ASCII = 't' 101
0xDC00, // ASCII = 'u' 110111
0xF600, // ASCII = 'v' 1111011
0xD600, // ASCII = 'w' 1101011
0xDF00, // ASCII = 'x' 11011111
0xBA00, // ASCII = 'y' 1011101
0xEA80, // ASCII = 'z' 111010101
0xADC0, // ASCII = '{' 1010110111
0xDD80, // ASCII = '|' 110111011
0xAD40, // ASCII = '}' 1010110101
0xB5C0, // ASCII = '~' 1011010111
0xED40 // ASCII = 127 1110110101
};

View File

@ -0,0 +1,98 @@
#include <HamShield.h>
#include "varicode.h"
DDS dds;
void setup() {
Serial.begin(9600);
pinMode(11, OUTPUT);
pinMode(3, OUTPUT);
pinMode(2, OUTPUT);
// put your setup code here, to run once:
dds.setReferenceClock(32000);
dds.start();
dds.setFrequency(1000);
dds.on();
}
volatile bool sent = true;
volatile uint16_t bitsToSend = 0;
volatile uint8_t zeroCount = 0;
void sendChar(uint8_t c) {
uint16_t bits = varicode[c];
while((bits&0x8000)==0) {
bits<<=1;
}
while(!sent) {} //delay(32);
cli();
sent = false;
bitsToSend = bits;
sei();
while(!sent) {} //delay(32);
//PORTD &= ~_BV(2); // Diagnostic pin (D2)
}
char *string = "Why hello there, friend. Nice to meet you. Welcome to PSK31. 73, VE6SLP sk\r\n";
void loop() {
int i;
// put your main code here, to run repeatedly:
//for(i = 0; i<5; i++)
// sendChar(0);
// return;
for(i = 0; i < strlen(string); i++) {
sendChar(string[i]);
//Serial.println(string[i]);
}
}
const uint8_t amplitudeShape[41] = {
255, 241, 228, 215, 203, 191, 181, 171, 161, 152, 143, 135, 128, 121, 114, 107, 101, 96, 90, 85, 80, 76, 72, 68, 64, 60, 57, 54, 51, 48, 45, 42, 40, 38, 36, 34, 32, 30, 28, 27, 25
};
// This will trigger at 8kHz
const uint16_t qpskConvolution[32] = {
180, 90, -90, 0, -90, 0, 180, 90,
0, -90, 90, 180, 90, 180, 0, -90,
90, 180, 0, -90, 0, -90, 90, 180,
-90, 0, 180, 90, 180, 90, -90, 0
};
uint8_t last5Bits = 0b00000;
ISR(ADC_vect) {
static uint8_t outer = 0;
static uint8_t tcnt = 0;
TIFR1 |= _BV(ICF1);
// Wave shaping
// TODO: Improve how this would perform.
if(tcnt < 81)
dds.setAmplitude(amplitudeShape[(81-tcnt)/2]);
if(tcnt > (255-81))
dds.setAmplitude(amplitudeShape[(tcnt-174)/2]);
dds.clockTick();
if(outer++ == 1) {
outer = 0;
} else {
return;
}
if(tcnt++ == 0) { // Next bit
last5Bits <<= 1;
if(!sent) {
if((bitsToSend & 0x8000) == 0) {
zeroCount++;
} else {
zeroCount = 0;
last5Bits |= 1;
}
dds.changePhaseDeg(qpskConvolution[last5Bits&31]);
bitsToSend<<=1;
if(zeroCount == 2) {
sent = true;
}
} else {
// Idle on zeroes
dds.changePhaseDeg(qpskConvolution[last5Bits&31]);
}
}
}

View File

@ -0,0 +1,130 @@
const uint16_t varicode[] = {
0xAAC0, // ASCII = 0 1010101011
0xB6C0, // ASCII = 1 1011011011
0xBB40, // ASCII = 2 1011101101
0xDDC0, // ASCII = 3 1101110111
0xBAC0, // ASCII = 4 1011101011
0xD7C0, // ASCII = 5 1101011111
0xBBC0, // ASCII = 6 1011101111
0xBF40, // ASCII = 7 1011111101
0xBFC0, // ASCII = 8 1011111111
0xEF00, // ASCII = 9 11101111
0xE800, // ASCII = 10 11101
0xDBC0, // ASCII = 11 1101101111
0xB740, // ASCII = 12 1011011101
0xF800, // ASCII = 13 11111
0xDD40, // ASCII = 14 1101110101
0xEAC0, // ASCII = 15 1110101011
0xBDC0, // ASCII = 16 1011110111
0xBD40, // ASCII = 17 1011110101
0xEB40, // ASCII = 18 1110101101
0xEBC0, // ASCII = 19 1110101111
0xD6C0, // ASCII = 20 1101011011
0xDAC0, // ASCII = 21 1101101011
0xDB40, // ASCII = 22 1101101101
0xD5C0, // ASCII = 23 1101010111
0xDEC0, // ASCII = 24 1101111011
0xDF40, // ASCII = 25 1101111101
0xEDC0, // ASCII = 26 1110110111
0xD540, // ASCII = 27 1101010101
0xD740, // ASCII = 28 1101011101
0xEEC0, // ASCII = 29 1110111011
0xBEC0, // ASCII = 30 1011111011
0xDFC0, // ASCII = 31 1101111111
0x8000, // ASCII = ' ' 1
0xFF80, // ASCII = '!' 111111111
0xAF80, // ASCII = '"' 101011111
0xFA80, // ASCII = '#' 111110101
0xED80, // ASCII = '$' 111011011
0xB540, // ASCII = '%' 1011010101
0xAEC0, // ASCII = '&' 1010111011
0xBF80, // ASCII = ''' 101111111
0xFB00, // ASCII = '(' 11111011
0xF700, // ASCII = ')' 11110111
0xB780, // ASCII = '*' 101101111
0xEF80, // ASCII = '+' 111011111
0xEA00, // ASCII = ',' 1110101
0xD400, // ASCII = '-' 110101
0xAE00, // ASCII = '.' 1010111
0xD780, // ASCII = '/' 110101111
0xB700, // ASCII = '0' 10110111
0xBD00, // ASCII = '1' 10111101
0xED00, // ASCII = '2' 11101101
0xFF00, // ASCII = '3' 11111111
0xBB80, // ASCII = '4' 101110111
0xAD80, // ASCII = '5' 101011011
0xB580, // ASCII = '6' 101101011
0xD680, // ASCII = '7' 110101101
0xD580, // ASCII = '8' 110101011
0xDB80, // ASCII = '9' 110110111
0xF500, // ASCII = ':' 11110101
0xDE80, // ASCII = ';' 110111101
0xF680, // ASCII = '<' 111101101
0xAA00, // ASCII = '=' 1010101
0xEB80, // ASCII = '>' 111010111
0xABC0, // ASCII = '?' 1010101111
0xAF40, // ASCII = '@' 1010111101
0xFA00, // ASCII = 'A' 1111101
0xEB00, // ASCII = 'B' 11101011
0xAD00, // ASCII = 'C' 10101101
0xB500, // ASCII = 'D' 10110101
0xEE00, // ASCII = 'E' 1110111
0xDB00, // ASCII = 'F' 11011011
0xFD00, // ASCII = 'G' 11111101
0xAA80, // ASCII = 'H' 101010101
0xFE00, // ASCII = 'I' 1111111
0xFE80, // ASCII = 'J' 111111101
0xBE80, // ASCII = 'K' 101111101
0xD700, // ASCII = 'L' 11010111
0xBB00, // ASCII = 'M' 10111011
0xDD00, // ASCII = 'N' 11011101
0xAB00, // ASCII = 'O' 10101011
0xD500, // ASCII = 'P' 11010101
0xEE80, // ASCII = 'Q' 111011101
0xAF00, // ASCII = 'R' 10101111
0xDE00, // ASCII = 'S' 1101111
0xDA00, // ASCII = 'T' 1101101
0xAB80, // ASCII = 'U' 101010111
0xDA80, // ASCII = 'V' 110110101
0xAE80, // ASCII = 'W' 101011101
0xBA80, // ASCII = 'X' 101110101
0xBD80, // ASCII = 'Y' 101111011
0xAB40, // ASCII = 'Z' 1010101101
0xFB80, // ASCII = '[' 1111101110
0xF780, // ASCII = '\' 111101111
0xFD80, // ASCII = ']' 111111011
0xAFC0, // ASCII = '^' 1010111111
0xB680, // ASCII = '_' 101101101
0xB7C0, // ASCII = '`' 1011011111
0xB000, // ASCII = 'a' 1011
0xBE00, // ASCII = 'b' 1011111
0xBC00, // ASCII = 'c' 101111
0xB400, // ASCII = 'd' 101101
0xC000, // ASCII = 'e' 11
0xF400, // ASCII = 'f' 111101
0xB600, // ASCII = 'g' 1011011
0xAC00, // ASCII = 'h' 101011
0xD000, // ASCII = 'i' 1101
0xF580, // ASCII = 'j' 111101011
0xBF00, // ASCII = 'k' 10111111
0xD800, // ASCII = 'l' 11011
0xEC00, // ASCII = 'm' 111011
0xF000, // ASCII = 'n' 1111
0xE000, // ASCII = 'o' 111
0xFC00, // ASCII = 'p' 111111
0xDF80, // ASCII = 'q' 110111111
0xA800, // ASCII = 'r' 10101
0xB800, // ASCII = 's' 10111
0xA000, // ASCII = 't' 101
0xDC00, // ASCII = 'u' 110111
0xF600, // ASCII = 'v' 1111011
0xD600, // ASCII = 'w' 1101011
0xDF00, // ASCII = 'x' 11011111
0xBA00, // ASCII = 'y' 1011101
0xEA80, // ASCII = 'z' 111010101
0xADC0, // ASCII = '{' 1010110111
0xDD80, // ASCII = '|' 110111011
0xAD40, // ASCII = '}' 1010110101
0xB5C0, // ASCII = '~' 1011010111
0xED40 // ASCII = 127 1110110101
};

View File

@ -0,0 +1,430 @@
// So the precalculated values will get stored
#define DDS_REFCLK_DEFAULT (34965/2)
#include <HamShield.h>
#include <Wire.h>
HamShield radio;
DDS dds;
// Defined at the end of the sketch
extern const uint16_t image[256*20] PROGMEM;
#define F_1200 0
#define F_1500 1
#define F_2400 2
ddsAccumulator_t freqTable[3];
void setup() {
Serial.begin(9600);
Wire.begin();
// Query the HamShield for status information
Serial.print("Radio status: ");
int result = 0;
result = radio.testConnection();
Serial.println(result,DEC);
// Tell the HamShield to start up
radio.initialize();
radio.setRfPower(0);
radio.setVHF();
radio.setFrequency(145500);
pinMode(2, OUTPUT);
pinMode(3, OUTPUT);
pinMode(11, INPUT); // HiZ
// put your setup code here, to run once:
//dds.setReferenceClock(34965/4);
dds.start();
freqTable[F_1200] = dds.calcFrequency(1200);
freqTable[F_1500] = dds.calcFrequency(1500);
freqTable[F_2400] = dds.calcFrequency(2400);
dds.setFrequency(1000);
dds.on();
Serial.println("DDS on");
delay(1000);
dds.off();
delay(2000);
Serial.println("Next");
}
uint8_t code = MARTIN1;
bool parityCalc(int code) {
unsigned int v; // word value to compute the parity of
bool parity = false; // parity will be the parity of v
while (code)
{
parity = !parity;
code = code & (code - 1);
}
return parity;
}
volatile bool registered = false;
volatile bool scanning = false;
volatile bool done = false;
volatile uint16_t nextBlock = 0;
volatile uint8_t currentScanline = 0;
volatile uint16_t scanline[2][20];
// Format is 3 'images', one each for green, blue and red
// But we don't have room, so it's monochrome
// 256 rows each
// 10 sets of 32 bits encoding on/off for the colour
//const unsigned long image[256][10] PROGMEM = {
//};
void loadScanline(uint8_t s, int y) {
for(int i = 0; i < 20; i++) {
scanline[s][i] = pgm_read_word_near(image + y*20 + i);
}
}
#define DON() PORTD |= _BV(2);
#define DOFF() PORTD &= ~_BV(2);
void loop() {
// Load the first scanline
loadScanline(0, 0);
radio.setModeTransmit();
delay(500);
// VIS
dds.playWait(1900,300);
dds.playWait(1200,10);
dds.playWait(1900,300);
dds.playWait(1200,30);
for(int x = 0; x < 7; x++) {
if(bitRead(code,x)) { dds.playWait(1100,30); } else { dds.playWait(1300,30); }
}
if(parityCalc(code)) { dds.playWait(1300,30); } else { dds.playWait(1100,30); }
dds.playWait(1200,30);
dds.on();
for(int y = 1; y < 256; y++){
DON();
dds.setPrecalcFrequency(freqTable[F_1200]);
// Subtract for the timer ticks
delayMicroseconds(3562); // sync pulse (4862 uS)
DOFF();
DON();
dds.setPrecalcFrequency(freqTable[F_1500]);
// Subtract for the timer ticks
delayMicroseconds(442); // sync porch (572 uS)
DOFF();
scanning = true;
for(uint8_t c = 0; c<3; c++) {
scanning = true;
while(!registered);
registered = false;
loadScanline((++currentScanline) & 1, y);
while(!done);
dds.setPrecalcFrequency(freqTable[F_1500]);
done = false;
scanning = false;
DON();
delayMicroseconds(442); // color separator pulse (572 uS)
DOFF();
}
}
dds.off();
radio.setModeReceive();
delay(10000);
return;
}
// The DDS is running faster than the pixel clock, so we
// only update the pixel frequency every few ticks.
ISR(ADC_vect) {
static uint8_t tcnt = 0;
static uint8_t shifts = 0;
static uint8_t shiftingLine = 0;
static uint8_t linePos = 0;
static uint16_t pixelBlock;
TIFR1 |= _BV(ICF1);
dds.clockTick();
if(scanning) {
if(++tcnt == 8) {
tcnt = 0;
if(linePos == 21) {
done = true;
linePos = 0;
}
if(linePos == 0) {
shifts = 0;
shiftingLine = currentScanline&1;
registered = true;
}
if(shifts == 0) {
pixelBlock = scanline[shiftingLine][linePos++];
}
if(pixelBlock & 0x8000) {
dds.setPrecalcFrequency(freqTable[F_2400]);
} else {
dds.setPrecalcFrequency(freqTable[F_1500]);
}
if(++shifts == 16) {
shifts = 0;
}
pixelBlock <<= 1;
}
}
}
// Image is 256 lines * 320 pixels per line, packed to 16 bits at a time
const uint16_t image[256*20] PROGMEM = {
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 1
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 2
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 3
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 4
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 5
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 6
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 7
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 8
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 9
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 10
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 11
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 12
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 13
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 14
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 15
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 16
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 17
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 18
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 19
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 20
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 21
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 22
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 23
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 24
0xFFFF, 0xE0FF, 0x07FF, 0xBFCF, 0xFFFF, 0xFFC1, 0xF3FE, 0x7FF9, 0xFF3F, 0xFC1F, 0xE0FF, 0xF7F9, 0xFFFF, 0xFFF8, 0x3E7F, 0xCFFF, 0x3FE7, 0xFFFF, 0xFFFF, 0xFFFF, // Line 25
0xFFFF, 0x807C, 0x03FF, 0x3FCF, 0xFFFF, 0xFF80, 0x73FE, 0x7FF9, 0xFF3F, 0xF00F, 0x807F, 0xE7F9, 0xFFFF, 0xFFF0, 0x0E7F, 0xCFFF, 0x3FE7, 0xFFFF, 0xFFFF, 0xFFFF, // Line 26
0xFFFF, 0x1F38, 0xF9FF, 0x3FCF, 0xFFFF, 0xFF1E, 0x33FF, 0xFFF9, 0xFF3F, 0xE3E7, 0x1F3F, 0xE7F9, 0xFFFF, 0xFFE3, 0xC67F, 0xFFFF, 0x3FE7, 0xFFFF, 0xFFFF, 0xFFFF, // Line 27
0xFFFF, 0x3F19, 0xFCFF, 0x3FCF, 0xFFFF, 0xFF3F, 0x33FF, 0xFFF9, 0xFF3F, 0xE7E3, 0x3F9F, 0xE7F9, 0xFFFF, 0xFFE7, 0xE67F, 0xFFFF, 0x3FE7, 0xFFFF, 0xFFFF, 0xFFFF, // Line 28
0xFFFE, 0x7FF3, 0xFCFF, 0x3FCF, 0x0723, 0x8F3F, 0xF21E, 0x7879, 0xE13F, 0xCFFE, 0x7F9F, 0xE7F9, 0xE0E4, 0x71E7, 0xFE43, 0xCF0F, 0x3C27, 0xFFFF, 0xFFFF, 0xFFFF, // Line 29
0xFFFE, 0x7FF3, 0xFCFF, 0x3FCE, 0x0300, 0x071F, 0xF00E, 0x7019, 0xC03F, 0xCFFE, 0x7F9F, 0xE7F9, 0xC060, 0x00E3, 0xFE01, 0xCE03, 0x3807, 0xFFFF, 0xFFFF, 0xFFFF, // Line 30
0xFFFE, 0x7FF3, 0xFE7F, 0x000C, 0xF31C, 0x7381, 0xF1E6, 0x6799, 0x9E3F, 0xCFFE, 0x7FCF, 0xE001, 0x9E63, 0x8E70, 0x3E3C, 0xCCF3, 0x33C7, 0xFFFF, 0xFFFF, 0xFFFF, // Line 31
0xFFFE, 0x7FF3, 0xFC7F, 0x000F, 0x833C, 0xF3F0, 0x73E6, 0x67C9, 0x9F3F, 0xCFFE, 0x7F8F, 0xE001, 0xF067, 0x9E7E, 0x0E7C, 0xCCF9, 0x33E7, 0xFFFF, 0xFFFF, 0xFFFF, // Line 32
0xFFFE, 0x7FF3, 0xFCFF, 0x3FCE, 0x033C, 0xF3FF, 0x33E6, 0x6009, 0x9F3F, 0xCFFE, 0x7F9F, 0xE7F9, 0xC067, 0x9E7F, 0xE67C, 0xCC01, 0x33E7, 0xFFFF, 0xFFFF, 0xFFFF, // Line 33
0xFFFE, 0x7FB3, 0xFCFF, 0x3FCC, 0xF33C, 0xF3FF, 0x33E6, 0x67F9, 0x9F3F, 0xCFF6, 0x7F9F, 0xE7F9, 0x9E67, 0x9E7F, 0xE67C, 0xCCFF, 0x33E7, 0xFFFF, 0xFFFF, 0xFFFF, // Line 34
0xFFFF, 0x3F19, 0xE0FF, 0x3FCC, 0xF33C, 0xF33F, 0x33E6, 0x67F9, 0x9F3F, 0xE7E3, 0x3C1F, 0xE7F9, 0x9E67, 0x9E67, 0xE67C, 0xCCFF, 0x33E7, 0xFFFF, 0xFFFF, 0xFFFF, // Line 35
0xFFFF, 0x1F38, 0xF1FF, 0x3FCC, 0xE33C, 0xF31F, 0x33E6, 0x6789, 0x9E3F, 0xE3E7, 0x1E3F, 0xE7F9, 0x9C67, 0x9E63, 0xE67C, 0xCCF1, 0x33C7, 0xFFFF, 0xFFFF, 0xFFFF, // Line 36
0xFFFF, 0x807C, 0x01FF, 0x3FCC, 0x033C, 0xF380, 0x73E6, 0x7019, 0xC03F, 0xF00F, 0x803F, 0xE7F9, 0x8067, 0x9E70, 0x0E7C, 0xCE03, 0x3807, 0xFFFF, 0xFFFF, 0xFFFF, // Line 37
0xFFFF, 0xE0FF, 0x04FF, 0xBFCE, 0x1B3C, 0xF3C0, 0xF3E6, 0x7839, 0xE13F, 0xFC1F, 0xE09F, 0xF7F9, 0xC367, 0x9E78, 0x1E7C, 0xCF07, 0x3C27, 0xFFFF, 0xFFFF, 0xFFFF, // Line 38
0xFFFF, 0xFFFF, 0xFEFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFDF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 39
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 40
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 41
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 42
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 43
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 44
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 45
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 46
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 47
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 48
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 49
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 50
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 51
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 52
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 53
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 54
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 55
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x1FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 56
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFE0, 0x007F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 57
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFF80, 0x001F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 58
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFE00, 0x0007, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 59
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFC3, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFC00, 0x0003, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 60
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xF800, 0x3FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xF800, 0x0001, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 61
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xC000, 0x0FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xF800, 0x0000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 62
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x8000, 0x03FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xF000, 0x0000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 63
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x0000, 0x01FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xE000, 0x0000, 0x7FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 64
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFE, 0x0000, 0x00FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xE000, 0x0000, 0x7FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 65
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFC, 0x0000, 0x007F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xC000, 0x0000, 0x7FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 66
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFC, 0x0000, 0x003F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xC000, 0x0000, 0x7FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 67
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFF8, 0x0000, 0x001F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xC000, 0x0000, 0x7FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 68
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFF8, 0x0000, 0x000F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xC000, 0x0000, 0x7FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 69
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFF8, 0x0000, 0x000F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x8000, 0x0000, 0x7FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 70
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFF0, 0x0000, 0x000F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x8000, 0x0000, 0x7FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 71
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFF0, 0x0000, 0x0007, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x8000, 0x0000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 72
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFE0, 0x0000, 0x0007, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x8000, 0x0000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 73
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFE0, 0x0000, 0x0007, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x8000, 0x0001, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 74
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFE0, 0x0000, 0x0007, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x8000, 0x0001, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 75
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFE0, 0x0000, 0x0007, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x8000, 0x0003, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 76
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFE0, 0x0000, 0x0007, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x8000, 0x0003, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 77
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFE0, 0x0000, 0x0007, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x8000, 0x0007, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 78
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFE0, 0x0000, 0x0007, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xC000, 0x000F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 79
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFE0, 0x0000, 0x000F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xC000, 0x001F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 80
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFE0, 0x0000, 0x000F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xE000, 0x007F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 81
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFF0, 0x0000, 0x001F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xF000, 0x01FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 82
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFF0, 0x0000, 0x001F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFC00, 0x07FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 83
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFF8, 0x0000, 0x003F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 84
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFC, 0x0000, 0x007F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 85
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFE, 0x0000, 0x01FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 86
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x8000, 0x07FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 87
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xF000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 88
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 89
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 90
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 91
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 92
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 93
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 94
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 95
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 96
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 97
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 98
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 99
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 100
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 101
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 102
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 103
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 104
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 105
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 106
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 107
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 108
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 109
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x87FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 110
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x03FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 111
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFE, 0x01FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 112
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFE, 0x01FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 113
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFE, 0x01FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 114
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFE, 0x01FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 115
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x03FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 116
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x87FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 117
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 118
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 119
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 120
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 121
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 122
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 123
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 124
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 125
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 126
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 127
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 128
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 129
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xF9FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 130
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xE07F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 131
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xC03F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 132
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x801F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 133
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x000F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 134
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x000F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 135
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x000F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 136
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x000F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 137
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x0007, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 138
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x0007, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFF83, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 139
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x0007, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFE01, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 140
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x0007, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFC00, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 141
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x0003, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xF800, 0x7FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 142
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x0001, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xF000, 0x7FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 143
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x0001, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xE000, 0x7FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 144
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x8000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xE000, 0x7FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 145
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x8000, 0x7FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xC000, 0x7FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 146
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xC000, 0x3FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x8000, 0x7FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 147
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xC000, 0x1FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x8000, 0x7FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 148
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xE000, 0x07FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x0000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 149
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xF000, 0x03FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFE, 0x0001, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 150
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xF000, 0x00FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFC, 0x0001, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 151
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xF800, 0x003F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFF0, 0x0003, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 152
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFC00, 0x001F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFE0, 0x0007, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 153
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFE00, 0x000F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFC0, 0x0007, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 154
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFF00, 0x0003, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFF00, 0x000F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 155
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFF80, 0x0000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFE00, 0x001F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 156
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFC0, 0x0000, 0x3FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFC00, 0x003F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 157
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFE0, 0x0000, 0x0FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xF800, 0x003F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 158
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFF0, 0x0000, 0x03FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xF000, 0x007F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 159
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFC, 0x0000, 0x00FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xE000, 0x00FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 160
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFE, 0x0000, 0x003F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xC000, 0x03FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 161
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x8000, 0x000F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x0000, 0x07FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 162
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xE000, 0x0003, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFC, 0x0000, 0x1FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 163
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xF000, 0x0000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFF0, 0x0000, 0x3FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 164
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFC00, 0x0000, 0x3FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFC0, 0x0000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 165
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFE00, 0x0000, 0x0FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFF00, 0x0001, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 166
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFF80, 0x0000, 0x03FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFC00, 0x0003, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 167
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFE0, 0x0000, 0x00FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xE000, 0x0007, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 168
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFF8, 0x0000, 0x003F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFE, 0x0000, 0x000F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 169
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFE, 0x0000, 0x000F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFE0, 0x0000, 0x001F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 170
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x8000, 0x0003, 0xFFFF, 0xFFFF, 0xFFFF, 0xFF80, 0x0000, 0x003F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 171
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xE000, 0x0000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFC00, 0x0000, 0x007F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 172
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFC00, 0x0000, 0x3FFF, 0xFFFF, 0xFFFF, 0xF000, 0x0000, 0x01FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 173
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFF00, 0x0000, 0x07FF, 0xFFFF, 0xFFFF, 0xC000, 0x0000, 0x03FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 174
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFF80, 0x0000, 0x001F, 0xFFFF, 0xFFF8, 0x0000, 0x0000, 0x0FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 175
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFE0, 0x0000, 0x0000, 0x1FFF, 0xA000, 0x0000, 0x0000, 0x7FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 176
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFF8, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0001, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 177
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFE, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x000F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 178
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x8000, 0x0000, 0x0000, 0x0000, 0x0000, 0x003F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 179
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xE000, 0x0000, 0x0000, 0x0000, 0x0000, 0x00FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 180
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xF800, 0x0000, 0x0000, 0x0000, 0x0000, 0x0FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 181
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFE00, 0x0000, 0x0000, 0x0000, 0x0000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 182
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFF80, 0x0000, 0x0000, 0x0000, 0x0007, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 183
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFE0, 0x0000, 0x0000, 0x0000, 0x001F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 184
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFC, 0x0000, 0x0000, 0x0000, 0x007F, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 185
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x0000, 0x0000, 0x0000, 0x03FF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 186
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xF000, 0x0000, 0x0000, 0x1FFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 187
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFC0, 0x0000, 0x0007, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 188
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 189
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 190
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 191
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 192
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 193
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 194
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 195
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 196
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 197
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 198
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 199
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 200
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 201
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 202
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 203
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 204
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 205
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 206
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 207
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 208
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 209
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 210
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 211
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 212
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 213
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 214
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 215
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 216
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 217
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 218
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 219
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 220
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 221
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 222
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 223
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 224
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 225
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 226
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 227
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 228
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 229
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xF9FF, 0xFFBF, 0xEE00, 0xF87F, 0x07EF, 0xFC03, 0xFFFF, 0xFFFF, // Line 230
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xF9FF, 0xFF9F, 0xCC00, 0xF01E, 0x01CF, 0xF801, 0xFFFF, 0xFFFF, // Line 231
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xF9FF, 0xFF9F, 0xCCFF, 0xE79C, 0x78CF, 0xF9F8, 0xFFFF, 0xFFFF, // Line 232
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xF9FF, 0xFF8F, 0x8CFF, 0xEFDC, 0xFCCF, 0xF9FC, 0xFFFF, 0xFFFF, // Line 233
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x09E1, 0xFFCF, 0x9CFF, 0xCFFC, 0xFFCF, 0xF9FC, 0xFFFF, 0xFFFF, // Line 234
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFE, 0x01C0, 0x7FCF, 0x9CFF, 0xC83C, 0x7FCF, 0xF9F8, 0xFFFF, 0xFFFF, // Line 235
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFC, 0xF19E, 0x7FE7, 0x3C01, 0xC01E, 0x07CF, 0xF801, 0xFFFF, 0xFFFF, // Line 236
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFC, 0xF99F, 0x3FE7, 0x3C01, 0xC78F, 0xC1CF, 0xF803, 0xFFFF, 0xFFFF, // Line 237
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFC, 0xF980, 0x3FE7, 0x3CFF, 0xCFCF, 0xFCCF, 0xF9FF, 0xFFFF, 0xFFFF, // Line 238
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFC, 0xF99F, 0xFFF2, 0x7CFF, 0xCFCF, 0xFCCF, 0xF9FF, 0xFFFF, 0xFFFF, // Line 239
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFC, 0xF99F, 0xFFF2, 0x7CFF, 0xCFCC, 0xFCCF, 0xF9FF, 0xFFFF, 0xFFFF, // Line 240
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFC, 0xF19E, 0x3FF8, 0xFCFF, 0xE79C, 0x7CCF, 0xF9FF, 0xFFFF, 0xFFFF, // Line 241
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFE, 0x01C0, 0x7FF8, 0xFC00, 0xF01E, 0x01E0, 0x09FF, 0xFFFF, 0xFFFF, // Line 242
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x09E0, 0xFFF8, 0xFE00, 0xF87F, 0x03E0, 0x0DFF, 0xFFFF, 0xFFFF, // Line 243
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 244
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 245
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 246
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 247
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 248
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 249
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 250
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 251
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 252
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 253
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 254
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 255
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, // Line 256
};