HOTP and TOTP-SHA-1 working.

why the frak aren't the SHA-256 and SHA-512 variants working
This commit is contained in:
Kyle Isom
2013-12-19 00:04:26 -07:00
parent dbbd5116b5
commit dc04475120
5 changed files with 209 additions and 62 deletions

51
hotp.go
View File

@@ -3,6 +3,10 @@ package twofactor
import (
"crypto"
"crypto/sha1"
"encoding/base32"
"io"
"net/url"
"strconv"
)
type HOTP struct {
@@ -38,3 +42,50 @@ func (otp *HOTP) URL(label string) string {
func (otp *HOTP) SetProvider(provider string) {
otp.provider = provider
}
func GenerateGoogleHOTP() *HOTP {
key := make([]byte, sha1.Size)
if _, err := io.ReadFull(PRNG, key); err != nil {
return nil
}
return NewHOTP(key, 0, 6)
}
func hotpFromURL(u *url.URL) (*HOTP, string, error) {
label := u.Path[1:]
v := u.Query()
secret := v.Get("secret")
if secret == "" {
return nil, "", ErrInvalidURL
}
var digits = 6
if sdigit := v.Get("digits"); sdigit != "" {
tmpDigits, err := strconv.ParseInt(sdigit, 10, 8)
if err != nil {
return nil, "", err
}
digits = int(tmpDigits)
}
var counter uint64 = 0
if scounter := v.Get("counter"); scounter != "" {
var err error
counter, err = strconv.ParseUint(scounter, 10, 64)
if err != nil {
return nil, "", err
}
}
key, err := base32.StdEncoding.DecodeString(secret)
if err != nil {
return nil, "", err
}
otp := NewHOTP(key, counter, digits)
return otp, label, nil
}
func (otp *HOTP) QR(label string) ([]byte, error) {
return otp.oath.QR(otp.Type(), label)
}

View File

@@ -11,32 +11,8 @@ func newZeroHOTP() *HOTP {
return NewHOTP(testKey, 0, 6)
}
var sha1Hmac = []byte{
0x1f, 0x86, 0x98, 0x69, 0x0e,
0x02, 0xca, 0x16, 0x61, 0x85,
0x50, 0xef, 0x7f, 0x19, 0xda,
0x8e, 0x94, 0x5b, 0x55, 0x5a,
}
var truncExpect int64 = 0x50ef7f19
// This test runs through the truncation example given in the RFC.
func TestTruncate(t *testing.T) {
if result := truncate(sha1Hmac); result != truncExpect {
fmt.Printf("hotp: expected truncate -> %d, saw %d\n",
truncExpect, result)
t.FailNow()
}
sha1Hmac[19]++
if result := truncate(sha1Hmac); result == truncExpect {
fmt.Println("hotp: expected truncation to fail")
t.FailNow()
}
}
var rfcKey = []byte("12345678901234567890")
var rfcExpected = []string{
var rfcHotpKey = []byte("12345678901234567890")
var rfcHotpExpected = []string{
"755224",
"287082",
"359152",
@@ -51,21 +27,21 @@ var rfcExpected = []string{
// This test runs through the test cases presented in the RFC, and
// ensures that this implementation is in compliance.
func TestRFC(t *testing.T) {
otp := NewHOTP(rfcKey, 0, 6)
for i := 0; i < len(rfcExpected); i++ {
func TestHotpRFC(t *testing.T) {
otp := NewHOTP(rfcHotpKey, 0, 6)
for i := 0; i < len(rfcHotpExpected); i++ {
if otp.Counter() != uint64(i) {
fmt.Printf("hotp: invalid counter (should be %d, is %d",
fmt.Printf("twofactor: invalid counter (should be %d, is %d",
i, otp.Counter())
t.FailNow()
}
code := otp.OTP()
if code == "" {
fmt.Printf("hotp: failed to produce an OTP\n")
fmt.Printf("twofactor: failed to produce an OTP\n")
t.FailNow()
} else if code != rfcExpected[i] {
fmt.Printf("hotp: invalid OTP\n")
fmt.Printf("\tExpected: %s\n", rfcExpected[i])
} else if code != rfcHotpExpected[i] {
fmt.Printf("twofactor: invalid OTP\n")
fmt.Printf("\tExpected: %s\n", rfcHotpExpected[i])
fmt.Printf("\t Actual: %s\n", code)
fmt.Printf("\t Counter: %d\n", otp.counter)
t.FailNow()
@@ -76,15 +52,15 @@ func TestRFC(t *testing.T) {
// This test uses a different key than the test cases in the RFC,
// but runs through the same test cases to ensure that they fail as
// expected.
func TestBadRFC(t *testing.T) {
func TestHotpBadRFC(t *testing.T) {
otp := NewHOTP(testKey, 0, 6)
for i := 0; i < len(rfcExpected); i++ {
for i := 0; i < len(rfcHotpExpected); i++ {
code := otp.OTP()
if code == "" {
fmt.Printf("hotp: failed to produce an OTP\n")
fmt.Printf("twofactor: failed to produce an OTP\n")
t.FailNow()
} else if code == rfcExpected[i] {
fmt.Printf("hotp: should not have received a valid OTP\n")
} else if code == rfcHotpExpected[i] {
fmt.Printf("twofactor: should not have received a valid OTP\n")
t.FailNow()
}
}

53
oath.go
View File

@@ -1,6 +1,7 @@
package twofactor
import (
"code.google.com/p/rsc/qr"
"crypto"
"crypto/hmac"
"encoding/base32"
@@ -22,20 +23,6 @@ type oath struct {
provider string
}
// truncate contains the DT function from the RFC; this is used to
// deterministically select a sequence of 4 bytes from the HMAC
// counter hash.
func truncate(in []byte) int64 {
offset := int(in[len(in)-1] & 0xF)
p := in[offset : offset+4]
var binCode int32
binCode = int32((p[0] & 0x7f)) << 24
binCode += int32((p[1] & 0xff)) << 16
binCode += int32((p[2] & 0xff)) << 8
binCode += int32((p[3] & 0xff))
return int64(binCode) & 0x7FFFFFFF
}
func (o oath) Size() int {
return o.size
}
@@ -92,11 +79,7 @@ func (o oath) URL(t Type, label string) string {
}
func (o oath) QR(label string) ([]byte, error) {
return nil, nil
}
var digits = []int{
var digits = []int64{
0: 1,
1: 10,
2: 100,
@@ -117,7 +100,7 @@ func (o oath) OTP(counter uint64) string {
var ctr [8]byte
binary.BigEndian.PutUint64(ctr[:], counter)
var mod int = 1
var mod int64 = 1
if len(digits) > o.size {
for i := 1; i <= o.size; i++ {
mod *= 10
@@ -128,8 +111,32 @@ func (o oath) OTP(counter uint64) string {
h := hmac.New(o.hash, o.key)
h.Write(ctr[:])
dt := truncate(h.Sum(nil))
dt = dt % int64(mod)
fmtStr := fmt.Sprintf("%%%dd", o.size)
dt := truncate(h.Sum(nil)) % mod
fmtStr := fmt.Sprintf("%%0%dd", o.size)
return fmt.Sprintf(fmtStr, dt)
}
// truncate contains the DT function from the RFC; this is used to
// deterministically select a sequence of 4 bytes from the HMAC
// counter hash.
func truncate(in []byte) int64 {
offset := int(in[len(in)-1] & 0xF)
p := in[offset : offset+4]
var binCode int32
binCode = int32((p[0] & 0x7f)) << 24
binCode += int32((p[1] & 0xff)) << 16
binCode += int32((p[2] & 0xff)) << 8
binCode += int32((p[3] & 0xff))
return int64(binCode) & 0x7FFFFFFF
}
// QR generates a byte slice containing the a QR code encoded as a
// PNG with level Q error correction.
func (o oath) QR(t Type, label string) ([]byte, error) {
u := o.URL(t, label)
code, err := qr.Encode(u, qr.Q)
if err != nil {
return nil, err
}
return code.PNG(), nil
}

29
otp.go
View File

@@ -2,8 +2,10 @@ package twofactor
import (
"crypto/rand"
"errors"
"fmt"
"hash"
"net/url"
)
type Type uint
@@ -13,8 +15,15 @@ const (
OATH_TOTP
)
// PRNG is an io.Reader that provides a cryptographically secure
// random byte stream.
var PRNG = rand.Reader
var (
ErrInvalidURL = errors.New("twofactor: invalid URL")
ErrInvalidAlgo = errors.New("twofactor: invalid algorithm")
)
// Type OTP represents a one-time password token -- whether a
// software taken (as in the case of Google Authenticator) or a
// hardware token (as in the case of a YubiKey).
@@ -59,3 +68,23 @@ func OTPString(otp OTP) string {
}
return fmt.Sprintf("%s, %d", typeName, otp.Size())
}
func FromURL(URL string) (OTP, string, error) {
u, err := url.Parse(URL)
if err != nil {
return nil, "", err
}
if u.Scheme != "otpauth" {
return nil, "", ErrInvalidURL
}
switch {
case u.Host == "totp":
return totpFromURL(u)
case u.Host == "hotp":
return hotpFromURL(u)
default:
return nil, "", ErrInvalidURL
}
}

View File

@@ -1,6 +1,7 @@
package twofactor
import "fmt"
import "io"
import "testing"
func TestHOTPString(t *testing.T) {
@@ -11,3 +12,86 @@ func TestHOTPString(t *testing.T) {
t.FailNow()
}
}
// This test generates a new OTP, outputs the URL for that OTP,
// and attempts to parse that URL. It verifies that the two OTPs
// are the same, and that they produce the same output.
func TestURL(t *testing.T) {
var ident = "testuser@foo"
otp := NewHOTP(testKey, 0, 6)
url := otp.URL("testuser@foo")
otp2, id, err := FromURL(url)
if err != nil {
fmt.Printf("hotp: failed to parse HOTP URL\n")
t.FailNow()
} else if id != ident {
fmt.Printf("hotp: bad label\n")
fmt.Printf("\texpected: %s\n", ident)
fmt.Printf("\t actual: %s\n", id)
t.FailNow()
} else if otp2.Counter() != otp.Counter() {
fmt.Printf("hotp: OTP counters aren't synced\n")
fmt.Printf("\toriginal: %d\n", otp.Counter())
fmt.Printf("\t second: %d\n", otp2.Counter())
t.FailNow()
}
code1 := otp.OTP()
code2 := otp2.OTP()
if code1 != code2 {
fmt.Printf("hotp: mismatched OTPs\n")
fmt.Printf("\texpected: %s\n", code1)
fmt.Printf("\t actual: %s\n", code2)
}
// There's not much we can do test the QR code, except to
// ensure it doesn't fail.
_, err = otp.QR(ident)
if err != nil {
fmt.Printf("hotp: failed to generate QR code PNG (%v)\n", err)
t.FailNow()
}
// This should fail because the maximum size of an alphanumeric
// QR code with the lowest-level of error correction should
// max out at 4296 bytes. 8k may be a bit overkill... but it
// gets the job done. The value is read from the PRNG to
// increase the likelihood that the returned data is
// uncompressible.
var tooBigIdent = make([]byte, 8192)
_, err = io.ReadFull(PRNG, tooBigIdent)
if err != nil {
fmt.Printf("hotp: failed to read identity (%v)\n", err)
t.FailNow()
} else if _, err = otp.QR(string(tooBigIdent)); err == nil {
fmt.Println("hotp: QR code should fail to encode oversized URL")
t.FailNow()
}
}
// This test attempts a variety of invalid urls against the parser
// to ensure they fail.
func TestBadURL(t *testing.T) {
var urlList = []string{
"http://google.com",
"",
"-",
"foo",
"otpauth:/foo/bar/baz",
"://",
"otpauth://hotp/secret=bar",
"otpauth://hotp/?secret=QUJDRA&algorithm=SHA256",
"otpauth://hotp/?digits=",
"otpauth://hotp/?secret=123",
"otpauth://hotp/?secret=MFRGGZDF&digits=ABCD",
"otpauth://hotp/?secret=MFRGGZDF&counter=ABCD",
}
for i := range urlList {
if _, _, err := FromURL(urlList[i]); err == nil {
fmt.Println("hotp: URL should not have parsed successfully")
fmt.Printf("\turl was: %s\n", urlList[i])
t.FailNow()
}
}
}