Clean up and document code.
This commit is contained in:
parent
3a9d614010
commit
71a6f5e128
|
@ -29,6 +29,8 @@ include_directories(include)
|
|||
file(GLOB_RECURSE ${PROJECT_NAME}_HEADERS include/**.h)
|
||||
file(GLOB_RECURSE ${PROJECT_NAME}_SOURCES src/*.cc)
|
||||
|
||||
message("${PROJECT_NAME}_SOURCES -> libwrmath")
|
||||
|
||||
## BUILD
|
||||
|
||||
add_library(lib${PROJECT_NAME} ${${PROJECT_NAME}_SOURCES})
|
||||
|
|
|
@ -135,7 +135,7 @@ ABBREVIATE_BRIEF = "The $name class" \
|
|||
# description.
|
||||
# The default value is: NO.
|
||||
|
||||
ALWAYS_DETAILED_SEC = NO
|
||||
ALWAYS_DETAILED_SEC = YES
|
||||
|
||||
# If the INLINE_INHERITED_MEMB tag is set to YES, doxygen will show all
|
||||
# inherited members of a class in the documentation of that class as if those
|
||||
|
@ -226,7 +226,7 @@ SEPARATE_MEMBER_PAGES = NO
|
|||
# uses this value to replace tabs by spaces in code fragments.
|
||||
# Minimum value: 1, maximum value: 16, default value: 4.
|
||||
|
||||
TAB_SIZE = 4
|
||||
TAB_SIZE = 8
|
||||
|
||||
# This tag can be used to specify a number of aliases that act as commands in
|
||||
# the documentation. An alias has the form:
|
||||
|
@ -995,7 +995,7 @@ USE_MDFILE_AS_MAINPAGE =
|
|||
# also VERBATIM_HEADERS is set to NO.
|
||||
# The default value is: NO.
|
||||
|
||||
SOURCE_BROWSER = NO
|
||||
SOURCE_BROWSER = YES
|
||||
|
||||
# Setting the INLINE_SOURCES tag to YES will include the body of functions,
|
||||
# classes and enums directly into the documentation.
|
||||
|
@ -1014,7 +1014,7 @@ STRIP_CODE_COMMENTS = YES
|
|||
# function all documented functions referencing it will be listed.
|
||||
# The default value is: NO.
|
||||
|
||||
REFERENCED_BY_RELATION = NO
|
||||
REFERENCED_BY_RELATION = YES
|
||||
|
||||
# If the REFERENCES_RELATION tag is set to YES then for each documented function
|
||||
# all documented entities called/used by that function will be listed.
|
||||
|
@ -1533,7 +1533,7 @@ FORMULA_TRANSPARENT = YES
|
|||
# The default value is: NO.
|
||||
# This tag requires that the tag GENERATE_HTML is set to YES.
|
||||
|
||||
USE_MATHJAX = NO
|
||||
USE_MATHJAX = YES
|
||||
|
||||
# When MathJax is enabled you can set the default output format to be used for
|
||||
# the MathJax output. See the MathJax site (see:
|
||||
|
|
|
@ -16,23 +16,38 @@ namespace wr {
|
|||
namespace geom {
|
||||
|
||||
|
||||
constexpr uint8_t Basis_i = 0;
|
||||
constexpr uint8_t Basis_j = 1;
|
||||
constexpr uint8_t Basis_k = 2;
|
||||
/// \defgroup basis Basis vector indices.
|
||||
/// The following constants are provided as a convenience for indexing two-
|
||||
/// and three-dimensional vectors.
|
||||
|
||||
/// \ingroup basis
|
||||
/// Convenience constant for the x index.
|
||||
constexpr uint8_t Basis_x = 0;
|
||||
|
||||
/// \ingroup basis
|
||||
/// Convenience constant for the y index.
|
||||
constexpr uint8_t Basis_y = 1;
|
||||
|
||||
/// \ingroup basis
|
||||
/// Convenience constant for the z index.
|
||||
constexpr uint8_t Basis_z = 2;
|
||||
|
||||
|
||||
/// @brief Basis2d provides basis vectors for Vector2ds.
|
||||
static const Vector2d Basis2d[] = {
|
||||
Vector2d{1, 0},
|
||||
Vector2d{0, 1},
|
||||
};
|
||||
|
||||
|
||||
/// @brief Basis2d provides basis vectors for Vector2fs.
|
||||
static const Vector2f Basis2f[] = {
|
||||
Vector2f{1, 0},
|
||||
Vector2f{0, 1},
|
||||
};
|
||||
|
||||
|
||||
/// @brief Basis2d provides basis vectors for Vector3ds.
|
||||
static const Vector3d Basis3d[] = {
|
||||
Vector3d{1, 0, 0},
|
||||
Vector3d{0, 1, 0},
|
||||
|
@ -40,6 +55,7 @@ static const Vector3d Basis3d[] = {
|
|||
};
|
||||
|
||||
|
||||
/// @brief Basis2d provides basis vectors for Vector3fs.
|
||||
static const Vector3f Basis3f[] = {
|
||||
Vector3f{1, 0, 0},
|
||||
Vector3f{0, 1, 0},
|
||||
|
@ -47,12 +63,27 @@ static const Vector3f Basis3f[] = {
|
|||
};
|
||||
|
||||
|
||||
|
||||
/// Heading2f returns a compass heading for a Vector2f.
|
||||
/// @param vec A vector orientation.
|
||||
/// @return The compass heading of the vector in radians.
|
||||
float Heading2f(Vector2f vec);
|
||||
|
||||
/// Heading2d returns a compass heading for a Vector2d.
|
||||
/// @param vec A vector orientation.
|
||||
/// @return The compass heading of the vector in radians.
|
||||
double Heading2d(Vector2d vec);
|
||||
|
||||
/// Heading3f returns a compass heading for a Vector2f.
|
||||
/// @param vec A vector orientation.
|
||||
/// @return The compass heading of the vector in radians.
|
||||
float Heading3f(Vector3f vec);
|
||||
|
||||
/// Heading3d returns a compass heading for a Vector2f.
|
||||
/// @param vec A vector orientation.
|
||||
/// @return The compass heading of the vector in radians.
|
||||
double Heading3d(Vector3d vec);
|
||||
|
||||
|
||||
} // namespace geom
|
||||
} // namespace wr
|
||||
|
||||
|
|
|
@ -1,83 +1,102 @@
|
|||
/// quaternion.h contains an implementation of quaternions suitable
|
||||
/// for navigation in R3.
|
||||
#ifndef __WRMATH_QUATERNION_H
|
||||
#define __WRMATH_QUATERNION_H
|
||||
|
||||
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <initializer_list>
|
||||
#include <ostream>
|
||||
#include <wrmath/geom/vector.h>
|
||||
#include <wrmath/math.h>
|
||||
|
||||
|
||||
/// wr contains the wntrmute robotics code.
|
||||
namespace wr {
|
||||
/// geom contains geometric classes and functions.
|
||||
namespace geom {
|
||||
|
||||
|
||||
/**
|
||||
* Quaternions encode rotations in three-dimensional space. While technically
|
||||
* a quaternion is comprised of a real element and a complex vector<3>, for
|
||||
* the purposes of this library, it is modeled as a floating point 4D vector.
|
||||
*
|
||||
* For information on the underlying vector type, see the documentation for
|
||||
* wr::geom::Vector.
|
||||
*
|
||||
* The constructors are primarily intended for intended operations; in practice,
|
||||
* the quaternionf and quaterniond functions are more useful for constructing
|
||||
* quaternions from vectors and angles.
|
||||
*
|
||||
* Like vectors, quaternions carry an internal tolerance value ε that is used for
|
||||
* floating point comparisons. The wr::math namespace contains the default values
|
||||
* used for this; generally, a tolerance of 0.0001 is considered appropriate for
|
||||
* the uses of this library. The tolerance can be explicitly set with the
|
||||
* setEpsilon method.
|
||||
*/
|
||||
template <typename T>
|
||||
/// @brief Quaternions provide a representation of orientation and rotations
|
||||
/// in three dimensions.
|
||||
///
|
||||
/// Quaternions encode rotations in three-dimensional space. While technically
|
||||
/// a quaternion is comprised of a real element and a complex vector<3>, for
|
||||
/// the purposes of this library, it is modeled as a floating point 4D vector
|
||||
/// of the form <x, y, z, w>, where x, y, and z represent an axis of rotation in
|
||||
/// R3 and w the angle, in radians, of the rotation about that axis. Where Euler
|
||||
/// angles are concerned, the ZYX (or yaw, pitch, roll) sequence is used.
|
||||
///
|
||||
/// For information on the underlying vector type, see the documentation for
|
||||
/// wr::geom::Vector.
|
||||
///
|
||||
/// The constructors are primarily intended for intended operations; in practice,
|
||||
/// the quaternionf() and quaterniond() functions are more useful for constructing
|
||||
/// quaternions from vectors and angles.
|
||||
///
|
||||
/// Like vectors, quaternions carry an internal tolerance value ε that is used for
|
||||
/// floating point comparisons. The wr::math namespace contains the default values
|
||||
/// used for this; generally, a tolerance of 0.0001 is considered appropriate for
|
||||
/// the uses of this library. MATHJThe tolerance can be explicitly set with the
|
||||
/// setEpsilon method.
|
||||
template<typename T>
|
||||
class Quaternion {
|
||||
public:
|
||||
/**
|
||||
* The default Quaternion constructor returns an identity quaternion.
|
||||
*/
|
||||
Quaternion() : v(Vector<T, 3> {0.0, 0.0, 0.0}), w(1.0)
|
||||
///
|
||||
/// The default Quaternion constructor returns an identity quaternion.
|
||||
///
|
||||
Quaternion() : v(Vector<T, 3>{0.0, 0.0, 0.0}), w(1.0)
|
||||
{
|
||||
wr::math::DefaultEpsilon(this->eps);
|
||||
v.setEpsilon(this->eps);
|
||||
this->constrainAngle();
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* A Quaternion may be initialised with a Vector<T, 3> axis of rotation
|
||||
* and an angle of rotation. This doesn't do the angle transforms to simplify
|
||||
* internal operations.
|
||||
* @param _axis A three-dimensional vector of the same type as the Quaternion.
|
||||
* @param _angle The angle of rotation about the axis of rotation.
|
||||
*/
|
||||
|
||||
/// A Quaternion may be initialised with a Vector<T, 3> axis of rotation
|
||||
/// and an angle of rotation. This doesn't do the angle transforms to simplify
|
||||
/// internal operations.
|
||||
/// @param _axis A three-dimensional vector of the same type as the Quaternion.
|
||||
/// @param _angle The angle of rotation about the axis of rotation.
|
||||
Quaternion(Vector<T, 3> _axis, T _angle) : v(_axis), w(_angle)
|
||||
{
|
||||
wr::math::DefaultEpsilon(this->eps);
|
||||
this->constrainAngle();
|
||||
wr::math::DefaultEpsilon(this->eps);
|
||||
v.setEpsilon(this->eps);
|
||||
};
|
||||
|
||||
/**
|
||||
* A Quaternion may be initialised with a Vector<T, 4> comprised of the axis of rotation
|
||||
* followed by the angle of rotation.
|
||||
* @param vector A vector in the form <i, j, k, w>.
|
||||
*/
|
||||
///
|
||||
/// A Quaternion may be initialised with a Vector<T, 4> comprised of
|
||||
/// the axis of rotation followed by the angle of rotation.
|
||||
/// @param vector A vector in the form <x, y, z, w>.
|
||||
///
|
||||
Quaternion(Vector<T, 4> vector) :
|
||||
v(Vector<T, 3> {vector[0], vector[1], vector[2]}),
|
||||
v(Vector<T, 3>{vector[0], vector[1], vector[2]}),
|
||||
w(vector[3])
|
||||
{
|
||||
wr::math::DefaultEpsilon(this->eps);
|
||||
this->constrainAngle();
|
||||
wr::math::DefaultEpsilon(this->eps);
|
||||
v.setEpsilon(this->eps);
|
||||
}
|
||||
|
||||
|
||||
/// A Quaternion may be constructed with an initializer list of type T, which must have
|
||||
/// exactly N element.
|
||||
/// @param ilst An initial set of values in the form <x, y, z, w>.
|
||||
Quaternion(std::initializer_list<T> ilst)
|
||||
{
|
||||
auto it = ilst.begin();
|
||||
|
||||
/**
|
||||
* Set the comparison tolerance for this quaternion.
|
||||
* @param epsilon A tolerance value.
|
||||
*/
|
||||
this->v = Vector<T, 3>{it[0], it[1], it[2]};
|
||||
this->w = it[3];
|
||||
|
||||
this->constrainAngle();
|
||||
wr::math::DefaultEpsilon(this->eps);
|
||||
v.setEpsilon(this->eps);
|
||||
}
|
||||
|
||||
|
||||
/// Set the comparison tolerance for this quaternion.
|
||||
/// @param epsilon A tolerance value.
|
||||
void
|
||||
setEpsilon(T epsilon)
|
||||
{
|
||||
|
@ -86,10 +105,8 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Return the axis of rotation of this quaternion.
|
||||
* @return The axis of rotation of this quaternion.
|
||||
*/
|
||||
/// Return the axis of rotation of this quaternion.
|
||||
/// @return The axis of rotation of this quaternion.
|
||||
Vector<T, 3>
|
||||
axis() const
|
||||
{
|
||||
|
@ -97,10 +114,8 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Return the angle of rotation of this quaternion.
|
||||
* @return the angle of rotation of this quaternion.
|
||||
*/
|
||||
/// Return the angle of rotation of this quaternion.
|
||||
/// @return the angle of rotation of this quaternion.
|
||||
T
|
||||
angle() const
|
||||
{
|
||||
|
@ -108,15 +123,13 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Compute the norm of a quaternion. Treating the Quaternion as a
|
||||
* Vector<T, 4>, it's the same as computing the magnitude.
|
||||
* @return A non-negative real number.
|
||||
*/
|
||||
/// Compute the norm of a quaternion. Treating the Quaternion as a
|
||||
/// Vector<T, 4>, it's the same as computing the magnitude.
|
||||
/// @return A non-negative real number.
|
||||
T
|
||||
norm() const
|
||||
{
|
||||
T n = 0;
|
||||
T n = 0;
|
||||
|
||||
n += (this->v[0] * this->v[0]);
|
||||
n += (this->v[1] * this->v[1]);
|
||||
|
@ -127,58 +140,48 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Compute the conjugate of a quaternion.
|
||||
* @return The conjugate of this quaternion.
|
||||
*/
|
||||
/// Compute the conjugate of a quaternion.
|
||||
/// @return The conjugate of this quaternion.
|
||||
Quaternion
|
||||
conjugate() const
|
||||
{
|
||||
return Quaternion(Vector<T, 4> {-this->v[0], -this->v[1], -this->v[2], this->w});
|
||||
return Quaternion(Vector<T, 4>{-this->v[0], -this->v[1], -this->v[2], this->w});
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Compute the inverse of a quaternion.
|
||||
* @return The inverse of this quaternion.
|
||||
*/
|
||||
/// Compute the inverse of a quaternion.
|
||||
/// @return The inverse of this quaternion.
|
||||
Quaternion
|
||||
inverse() const
|
||||
{
|
||||
T _norm = this->norm();
|
||||
T _norm = this->norm();
|
||||
|
||||
return this->conjugate() / (_norm * _norm);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Determine whether this is a unit quaternion.
|
||||
* @return true if this is a unit quaternion.
|
||||
*/
|
||||
/// Determine whether this is a unit quaternion.
|
||||
/// @return true if this is a unit quaternion.
|
||||
bool
|
||||
isUnitQuaternion() const
|
||||
{
|
||||
return wr::math::WithinTolerance(this->norm(), (T)1.0, this->eps);
|
||||
return wr::math::WithinTolerance(this->norm(), (T) 1.0, this->eps);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Return the quaternion as a Vector<T, 4>, with the axis of rotation
|
||||
* followed by the angle of rotation.
|
||||
* @return A vector representation of the quaternion.
|
||||
*/
|
||||
/// Return the quaternion as a Vector<T, 4>, with the axis of rotation
|
||||
/// followed by the angle of rotation.
|
||||
/// @return A vector representation of the quaternion.
|
||||
Vector<T, 4>
|
||||
asVector() const
|
||||
{
|
||||
return Vector<T, 4> {this->v[0], this->v[1], this->v[2], this->w};
|
||||
return Vector<T, 4>{this->v[0], this->v[1], this->v[2], this->w};
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Rotate vector v about this quaternion.
|
||||
* @param v The vector to be rotated.
|
||||
* @return The rotated vector.
|
||||
*/
|
||||
/// Rotate vector v about this quaternion.
|
||||
/// @param v The vector to be rotated.
|
||||
/// @return The rotated vector.
|
||||
Vector<T, 3>
|
||||
rotate(Vector<T, 3> v) const
|
||||
{
|
||||
|
@ -186,33 +189,30 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Return the Euler angles for this quaternion as a vector of
|
||||
* <yaw, pitch, roll>. Users of this function should watch out
|
||||
* for gimball lock.
|
||||
* @return A vector<T, 3> containing <yaw, pitch, roll>
|
||||
*/
|
||||
/// Return the Euler angles for this quaternion as a vector of
|
||||
/// <yaw, pitch, roll>. Users of this function should watch out
|
||||
/// for gimbal lock.
|
||||
/// @return A vector<T, 3> containing <yaw, pitch, roll>
|
||||
Vector<T, 3>
|
||||
euler() const
|
||||
{
|
||||
T yaw, pitch, roll;
|
||||
T a = this->w, a2 = a * a;
|
||||
T b = this->v[0], b2 = b * b;
|
||||
T c = this->v[1], c2 = c * c;
|
||||
T d = this->v[2], d2 = d * d;
|
||||
T yaw, pitch, roll;
|
||||
T a = this->w, a2 = a * a;
|
||||
T b = this->v[0], b2 = b * b;
|
||||
T c = this->v[1], c2 = c * c;
|
||||
T d = this->v[2], d2 = d * d;
|
||||
|
||||
yaw = std::atan2(2 * ((a*b) + (c * d)), a2 - b2 - c2 + d2);
|
||||
pitch = std::asin(2 * ((b*d) - (a*c)));
|
||||
yaw = std::atan2(2 * ((a * b) + (c * d)), a2 - b2 - c2 + d2);
|
||||
pitch = std::asin(2 * ((b * d) - (a * c)));
|
||||
roll = std::atan2(2 * ((a * d) + (b * c)), a2 + b2 - c2 - d2);
|
||||
|
||||
return Vector<T, 3> {yaw, pitch, roll};
|
||||
|
||||
return Vector<T, 3>{yaw, pitch, roll};
|
||||
}
|
||||
|
||||
/**
|
||||
* Perform quaternion addition with another quaternion.
|
||||
* @param other The quaternion to be added with this one.
|
||||
* @return The result of adding the two quaternions together.
|
||||
*/
|
||||
|
||||
/// Perform quaternion addition with another quaternion.
|
||||
/// @param other The quaternion to be added with this one.
|
||||
/// @return The result of adding the two quaternions together.
|
||||
Quaternion
|
||||
operator+(const Quaternion<T> &other) const
|
||||
{
|
||||
|
@ -220,23 +220,19 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Perform quaternion subtraction with another quaternion.
|
||||
* @param other The quaternion to be subtracted from this one.
|
||||
* @return The result of subtracting the other quaternion from this one.
|
||||
*/
|
||||
/// Perform quaternion subtraction with another quaternion.
|
||||
/// @param other The quaternion to be subtracted from this one.
|
||||
/// @return The result of subtracting the other quaternion from this one.
|
||||
Quaternion
|
||||
operator-(const Quaternion<T> &other) const
|
||||
{
|
||||
return Quaternion(this->v - other.v, this->w - other.w);
|
||||
return Quaternion(this->v - other.v, this->w - other.w);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Perform scalar multiplication.
|
||||
* @param k The scaling value.
|
||||
* @return A scaled quaternion.
|
||||
*/
|
||||
/// Perform scalar multiplication.
|
||||
/// @param k The scaling value.
|
||||
/// @return A scaled quaternion.
|
||||
Quaternion
|
||||
operator*(const T k) const
|
||||
{
|
||||
|
@ -244,10 +240,9 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/** Perform scalar division.
|
||||
* @param k The scalar divisor.
|
||||
* @return A scaled quaternion.
|
||||
*/
|
||||
/// Perform scalar division.
|
||||
/// @param k The scalar divisor.
|
||||
/// @return A scaled quaternion.
|
||||
Quaternion
|
||||
operator/(const T k) const
|
||||
{
|
||||
|
@ -255,43 +250,37 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Perform quaternion Hamilton multiplication with a three-
|
||||
* dimensional vector; this is done by treating the vector
|
||||
* as a pure quaternion (e.g. with an angle of rotation of 0).
|
||||
* @param vector The vector to multiply with this quaternion.
|
||||
* @return The Hamilton product of the quaternion and vector.
|
||||
*/
|
||||
/// Perform quaternion Hamilton multiplication with a three-
|
||||
/// dimensional vector; this is done by treating the vector
|
||||
/// as a pure quaternion (e.g. with an angle of rotation of 0).
|
||||
/// @param vector The vector to multiply with this quaternion.
|
||||
/// @return The Hamilton product of the quaternion and vector.
|
||||
Quaternion
|
||||
operator*(const Vector<T, 3> &vector) const
|
||||
{
|
||||
return Quaternion(vector * this->w + this->v.cross(vector),
|
||||
(T)0.0);
|
||||
(T) 0.0);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Perform quaternion Hamilton multiplication.
|
||||
* @param other The other quaternion to multiply with this one.
|
||||
* @result The Hamilton product of the two quaternions.
|
||||
*/
|
||||
/// Perform quaternion Hamilton multiplication.
|
||||
/// @param other The other quaternion to multiply with this one.
|
||||
/// @result The Hamilton product of the two quaternions.
|
||||
Quaternion
|
||||
operator*(const Quaternion<T> &other) const
|
||||
{
|
||||
T angle = (this->w * other.w) -
|
||||
(this->v * other.v);
|
||||
Vector<T, 3> axis = (other.v * this->w) +
|
||||
(this->v * other.w) +
|
||||
(this->v.cross(other.v));
|
||||
T angle = (this->w * other.w) -
|
||||
(this->v * other.v);
|
||||
Vector<T, 3> axis = (other.v * this->w) +
|
||||
(this->v * other.w) +
|
||||
(this->v.cross(other.v));
|
||||
return Quaternion(axis, angle);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Perform quaternion equality checking.
|
||||
* @param other The quaternion to check equality against.
|
||||
* @return True if the two quaternions are equal within their tolerance.
|
||||
*/
|
||||
/// Perform quaternion equality checking.
|
||||
/// @param other The quaternion to check equality against.
|
||||
/// @return True if the two quaternions are equal within their tolerance.
|
||||
bool
|
||||
operator==(const Quaternion<T> &other) const
|
||||
{
|
||||
|
@ -300,11 +289,9 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Perform quaternion inequality checking.
|
||||
* @param other The quaternion to check inequality against.
|
||||
* @return True if the two quaternions are unequal within their tolerance.
|
||||
*/
|
||||
/// Perform quaternion inequality checking.
|
||||
/// @param other The quaternion to check inequality against.
|
||||
/// @return True if the two quaternions are unequal within their tolerance.
|
||||
bool
|
||||
operator!=(const Quaternion<T> &other) const
|
||||
{
|
||||
|
@ -312,27 +299,25 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Support stream output of a quaternion in the form `a + <i, j, k>`.
|
||||
* TODO: improve the formatting.
|
||||
* @param outs An output stream
|
||||
* @param q A quaternion
|
||||
* @return The output stream
|
||||
*/
|
||||
friend std::ostream&
|
||||
operator<<(std::ostream& outs, const Quaternion<T>& q)
|
||||
/// Support stream output of a quaternion in the form `a + <i, j, k>`.
|
||||
/// \todo improve the formatting.
|
||||
/// @param outs An output stream
|
||||
/// @param q A quaternion
|
||||
/// @return The output stream
|
||||
friend std::ostream &
|
||||
operator<<(std::ostream &outs, const Quaternion<T> &q)
|
||||
{
|
||||
outs << q.w << " + " << q.v;
|
||||
return outs;
|
||||
}
|
||||
|
||||
private:
|
||||
static constexpr T minRotation = -4 * M_PI;
|
||||
static constexpr T maxRotation = 4 * M_PI;
|
||||
static constexpr T minRotation = -4 * M_PI;
|
||||
static constexpr T maxRotation = 4 * M_PI;
|
||||
|
||||
Vector<T, 3> v; // axis of rotation
|
||||
T w; // angle of rotation
|
||||
T eps;
|
||||
Vector<T, 3> v; // axis of rotation
|
||||
T w; // angle of rotation
|
||||
T eps;
|
||||
|
||||
void
|
||||
constrainAngle()
|
||||
|
@ -347,99 +332,89 @@ private:
|
|||
};
|
||||
|
||||
|
||||
/**
|
||||
* Type aliases are provided for float and double quaternions.
|
||||
*/
|
||||
typedef Quaternion<float> Quaternionf;
|
||||
typedef Quaternion<double> Quaterniond;
|
||||
///
|
||||
/// \defgroup quaternion_aliases Quaternion type aliases.
|
||||
/// Type aliases are provided for float and double quaternions.
|
||||
///
|
||||
|
||||
/// \ingroup quaternion_aliases
|
||||
/// Type alias for a float Quaternion.
|
||||
typedef Quaternion<float> Quaternionf;
|
||||
|
||||
/// \ingroup quaternion_aliases
|
||||
/// Type alias for a double Quaternion.
|
||||
typedef Quaternion<double> Quaterniond;
|
||||
|
||||
|
||||
/**
|
||||
* Return a float quaternion scaled appropriately from a vector and angle,
|
||||
* e.g. angle = cos(angle / 2), axis.unitVector() * sin(angle / 2).
|
||||
* @param axis The axis of rotation.
|
||||
* @param angle The angle of rotation.
|
||||
* @return A quaternion.
|
||||
*/
|
||||
static Quaternionf
|
||||
quaternionf(Vector3f axis, float angle)
|
||||
{
|
||||
return Quaternionf(axis.unitVector() * std::sin(angle / 2.0),
|
||||
std::cos(angle / 2.0));
|
||||
}
|
||||
/// Return a float quaternion scaled appropriately from a vector and angle,
|
||||
/// e.g. angle = cos(angle / 2), axis.unitVector() * sin(angle / 2).
|
||||
/// @param axis The axis of rotation.
|
||||
/// @param angle The angle of rotation.
|
||||
/// @return A quaternion.
|
||||
/// @relatesalso Quaternion
|
||||
Quaternionf quaternionf(Vector3f axis, float angle);
|
||||
|
||||
|
||||
/**
|
||||
* Return a double quaternion scaled appropriately from a vector and angle,
|
||||
* e.g. angle = cos(angle / 2), axis.unitVector() * sin(angle / 2).
|
||||
* @param axis The axis of rotation.
|
||||
* @param angle The angle of rotation.
|
||||
* @return A quaternion.
|
||||
*/
|
||||
static Quaterniond
|
||||
quaterniond(Vector3d axis, double angle)
|
||||
{
|
||||
return Quaterniond(axis.unitVector() * std::sin(angle / 2.0),
|
||||
std::cos(angle / 2.0));
|
||||
}
|
||||
/// Return a double quaternion scaled appropriately from a vector and angle,
|
||||
/// e.g. angle = cos(angle / 2), axis.unitVector() * sin(angle / 2).
|
||||
/// @param axis The axis of rotation.
|
||||
/// @param angle The angle of rotation.
|
||||
/// @return A quaternion.
|
||||
/// @relatesalso Quaternion
|
||||
Quaterniond quaterniond(Vector3d axis, double angle);
|
||||
|
||||
|
||||
/**
|
||||
* Given a vector of Euler angles in ZYX sequence (e.g. yaw, pitch, roll),
|
||||
* return a quaternion.
|
||||
* @param euler A vector Euler angle in ZYX sequence.
|
||||
* @return A Quaternion representation of the orientation represented
|
||||
* by the Euler angles.
|
||||
*/
|
||||
static Quaternionf
|
||||
quaternionf_from_euler(Vector3f euler)
|
||||
{
|
||||
float x, y, z, w;
|
||||
euler = euler / 2.0;
|
||||
|
||||
float cos_yaw = std::cos(euler[0]);
|
||||
float cos_pitch = std::cos(euler[1]);
|
||||
float cos_roll = std::cos(euler[2]);
|
||||
float sin_yaw = std::sin(euler[0]);
|
||||
float sin_pitch = std::sin(euler[1]);
|
||||
float sin_roll = std::sin(euler[2]);
|
||||
|
||||
x = (sin_yaw * cos_pitch * cos_roll) + (cos_yaw * sin_pitch * sin_roll);
|
||||
y = (sin_yaw * cos_pitch * sin_roll) - (cos_yaw * sin_pitch * cos_roll);
|
||||
z = (cos_yaw * cos_pitch * sin_roll) + (sin_yaw * sin_pitch * cos_roll);
|
||||
w = (cos_yaw * cos_pitch * cos_roll) - (sin_yaw * sin_pitch * sin_roll);
|
||||
|
||||
return Quaternionf(Vector4f {x, y, z, w});
|
||||
}
|
||||
/// Given a vector of Euler angles in ZYX sequence (e.g. yaw, pitch, roll),
|
||||
/// return a quaternion.
|
||||
/// @param euler A vector Euler angle in ZYX sequence.
|
||||
/// @return A Quaternion representation of the orientation represented
|
||||
/// by the Euler angles.
|
||||
/// @relatesalso Quaternion
|
||||
Quaternionf quaternionf_from_euler(Vector3f euler);
|
||||
|
||||
|
||||
/**
|
||||
* Given a vector of Euler angles in ZYX sequence (e.g. yaw, pitch, roll),
|
||||
* return a quaternion.
|
||||
* @param euler A vector Euler angle in ZYX sequence.
|
||||
* @return A Quaternion representation of the orientation represented
|
||||
* by the Euler angles.
|
||||
*/
|
||||
static Quaterniond
|
||||
quaterniond_from_euler(Vector3d euler)
|
||||
{
|
||||
double x, y, z, w;
|
||||
euler = euler / 2.0;
|
||||
/// Given a vector of Euler angles in ZYX sequence (e.g. yaw, pitch, roll),
|
||||
/// return a quaternion.
|
||||
/// @param euler A vector Euler angle in ZYX sequence.
|
||||
/// @return A Quaternion representation of the orientation represented
|
||||
/// by the Euler angles.
|
||||
/// @relatesalso Quaternion
|
||||
Quaterniond quaterniond_from_euler(Vector3d euler);
|
||||
|
||||
double cos_yaw = std::cos(euler[0]);
|
||||
double cos_pitch = std::cos(euler[1]);
|
||||
double cos_roll = std::cos(euler[2]);
|
||||
double sin_yaw = std::sin(euler[0]);
|
||||
double sin_pitch = std::sin(euler[1]);
|
||||
double sin_roll = std::sin(euler[2]);
|
||||
|
||||
x = (sin_yaw * cos_pitch * cos_roll) + (cos_yaw * sin_pitch * sin_roll);
|
||||
y = (sin_yaw * cos_pitch * sin_roll) - (cos_yaw * sin_pitch * cos_roll);
|
||||
z = (cos_yaw * cos_pitch * sin_roll) + (sin_yaw * sin_pitch * cos_roll);
|
||||
w = (cos_yaw * cos_pitch * cos_roll) - (sin_yaw * sin_pitch * sin_roll);
|
||||
|
||||
return Quaterniond(Vector4d {x, y, z, w});
|
||||
}
|
||||
/// LERP computes the linear interpolation of two quaternions at some
|
||||
/// fraction of the distance between them.
|
||||
///
|
||||
/// \tparam T
|
||||
/// \param p The starting quaternion.
|
||||
/// \param q The ending quaternion.
|
||||
/// \param t The fraction of the distance between the two quaternions to
|
||||
/// interpolate.
|
||||
/// \return A Quaternion representing the linear interpolation of the
|
||||
/// two quaternions.
|
||||
template <typename T>
|
||||
Quaternion<T> LERP(Quaternion<T> p, Quaternion<T> q, T t);
|
||||
|
||||
|
||||
/// ShortestSLERP computes the shortest distance spherical linear
|
||||
/// interpolation between two quaternions at some fraction of the
|
||||
/// distance between them.
|
||||
///
|
||||
/// \tparam T
|
||||
/// \param p The starting quaternion.
|
||||
/// \param q The ending quaternion.
|
||||
/// \param t The fraction of the distance between the two quaternions
|
||||
/// to interpolate.
|
||||
/// \return A Quaternion representing the shortest path between two
|
||||
/// quaternions.
|
||||
template <typename T>
|
||||
Quaternion<T> ShortestSLERP(Quaternion<T> p, Quaternion<T> q, T t);
|
||||
|
||||
|
||||
/// Run a quick self test to exercise basic functionality of the Quaternion
|
||||
/// class to verify correct operation. Note that if \#NDEBUG is defined, the
|
||||
/// self test is disabled.
|
||||
void Quaternion_SelfTest();
|
||||
|
||||
|
||||
// Helpful references for understanding quaternions:
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
/// vector.h provides an implementation of vectors.
|
||||
#ifndef __WRMATH_GEOM_VECTOR_H
|
||||
#define __WRMATH_GEOM_VECTOR_H
|
||||
|
||||
|
@ -21,20 +22,18 @@ namespace wr {
|
|||
namespace geom {
|
||||
|
||||
|
||||
/**
|
||||
* Vector provides a standard interface for dimensionless fixed-size
|
||||
* vectors. Once instantiated, they cannot be modified. Note that while
|
||||
* the type is generic, it's intended to be used with floating-point
|
||||
* types. They can be indexed like arrays, and they contain an epsilon
|
||||
* value that defines a tolerance for equality.
|
||||
*/
|
||||
/// @brief Vectors represent a direction and magnitude.
|
||||
///
|
||||
/// Vector provides a standard interface for dimensionless fixed-size
|
||||
/// vectors. Once instantiated, they cannot be modified. Note that while
|
||||
/// the type is generic, it's intended to be used with floating-point
|
||||
/// types. They can be indexed like arrays, and they contain an epsilon
|
||||
/// value that defines a tolerance for equality.
|
||||
template <typename T, size_t N>
|
||||
class Vector {
|
||||
public:
|
||||
/**
|
||||
* The default constructor creates a unit vector for a given
|
||||
* type and size.
|
||||
*/
|
||||
/// The default constructor creates a unit vector for a given type
|
||||
/// and size.
|
||||
Vector()
|
||||
{
|
||||
T unitLength = (T)1.0 / std::sqrt(N);
|
||||
|
@ -45,11 +44,10 @@ public:
|
|||
wr::math::DefaultEpsilon(this->epsilon);
|
||||
}
|
||||
|
||||
/**
|
||||
* If given an initializer_list, the vector is created with
|
||||
* those values. There must be exactly N elements in the list.
|
||||
* @param ilst An intializer list with N elements of type T.
|
||||
*/
|
||||
|
||||
/// If given an initializer_list, the vector is created with
|
||||
/// those values. There must be exactly N elements in the list.
|
||||
/// @param ilst An intializer list with N elements of type T.
|
||||
Vector(std::initializer_list<T> ilst)
|
||||
{
|
||||
assert(ilst.size() == N);
|
||||
|
@ -59,10 +57,8 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Magnitude computes the length of the vector.
|
||||
* @return The length of the vector.
|
||||
*/
|
||||
/// Compute the length of the vector.
|
||||
/// @return The length of the vector.
|
||||
T magnitude() const {
|
||||
T result = 0;
|
||||
|
||||
|
@ -70,16 +66,13 @@ public:
|
|||
result += (this->arr[i] * this->arr[i]);
|
||||
}
|
||||
return std::sqrt(result);
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Set the tolerance for equality checks. At a minimum, this allows
|
||||
* for systemic errors in floating math arithmetic.
|
||||
*
|
||||
* @param eps is the maximum difference between this vector and
|
||||
* another.
|
||||
*/
|
||||
/// Set the tolerance for equality checks. At a minimum, this allows
|
||||
/// for systemic errors in floating math arithmetic.
|
||||
/// @param eps is the maximum difference between this vector and
|
||||
/// another.
|
||||
void
|
||||
setEpsilon(T eps)
|
||||
{
|
||||
|
@ -87,10 +80,8 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Determine whether this is a zero vector.
|
||||
* @return true if the vector is zero.
|
||||
*/
|
||||
/// Determine whether this is a zero vector.
|
||||
/// @return true if the vector is zero.
|
||||
bool
|
||||
isZero() const
|
||||
{
|
||||
|
@ -103,10 +94,8 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Obtain the unit vector for this vector.
|
||||
* @return The unit vector
|
||||
*/
|
||||
/// Obtain the unit vector for this vector.
|
||||
/// @return The unit vector
|
||||
Vector
|
||||
unitVector() const
|
||||
{
|
||||
|
@ -114,10 +103,8 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Determine if this is a unit vector, e.g. if its length is 1.
|
||||
* @return true if the vector is a unit vector.
|
||||
*/
|
||||
/// Determine if this is a unit vector, e.g. if its length is 1.
|
||||
/// @return true if the vector is a unit vector.
|
||||
bool
|
||||
isUnitVector() const
|
||||
{
|
||||
|
@ -125,11 +112,9 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Compute the angle between two other vectors.
|
||||
* @param other Another vector.
|
||||
* @return The angle in radians between the two vectors.
|
||||
*/
|
||||
/// Compute the angle between two other vectors.
|
||||
/// @param other Another vector.
|
||||
/// @return The angle in radians between the two vectors.
|
||||
T
|
||||
angle(const Vector<T, N> &other) const
|
||||
{
|
||||
|
@ -143,11 +128,9 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Determine whether two vectors are parallel.
|
||||
* @param other Another vector
|
||||
* @return True if the angle between the vectors is zero.
|
||||
*/
|
||||
/// Determine whether two vectors are parallel.
|
||||
/// @param other Another vector
|
||||
/// @return True if the angle between the vectors is zero.
|
||||
bool
|
||||
isParallel(const Vector<T, N> &other) const
|
||||
{
|
||||
|
@ -164,12 +147,10 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Determine if two vectors are orthogonal or perpendicular to each
|
||||
* other.
|
||||
* @param other Another vector
|
||||
* @return True if the two vectors are orthogonal.
|
||||
*/
|
||||
/// Determine if two vectors are orthogonal or perpendicular to each
|
||||
/// other.
|
||||
/// @param other Another vector
|
||||
/// @return True if the two vectors are orthogonal.
|
||||
bool
|
||||
isOrthogonal(const Vector<T, N> &other) const
|
||||
{
|
||||
|
@ -181,12 +162,10 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Project this vector onto some basis vector.
|
||||
* @param basis The basis vector to be projected onto.
|
||||
* @return A vector that is the projection of this onto the basis
|
||||
* vector.
|
||||
*/
|
||||
/// Project this vector onto some basis vector.
|
||||
/// @param basis The basis vector to be projected onto.
|
||||
/// @return A vector that is the projection of this onto the basis
|
||||
/// vector.
|
||||
Vector
|
||||
projectParallel(const Vector<T, N> &basis) const
|
||||
{
|
||||
|
@ -196,13 +175,11 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Project this vector perpendicularly onto some basis vector.
|
||||
* This is also called the rejection of the vector.
|
||||
* @param basis The basis vector to be projected onto.
|
||||
* @return A vector that is the orthogonal projection of this onto
|
||||
* the basis vector.
|
||||
*/
|
||||
/// Project this vector perpendicularly onto some basis vector.
|
||||
/// This is also called the rejection of the vector.
|
||||
/// @param basis The basis vector to be projected onto.
|
||||
/// @return A vector that is the orthogonal projection of this onto
|
||||
/// the basis vector.
|
||||
Vector
|
||||
projectOrthogonal(const Vector<T, N> &basis)
|
||||
{
|
||||
|
@ -211,12 +188,10 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Compute the cross product of two vectors. This is only defined
|
||||
* over three-dimensional vectors.
|
||||
* @param other Another 3D vector.
|
||||
* @return The cross product vector.
|
||||
*/
|
||||
/// Compute the cross product of two vectors. This is only defined
|
||||
/// over three-dimensional vectors.
|
||||
/// @param other Another 3D vector.
|
||||
/// @return The cross product vector.
|
||||
Vector
|
||||
cross(const Vector<T, N> &other) const
|
||||
{
|
||||
|
@ -229,12 +204,10 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Perform vector addition with another vector.
|
||||
* @param other The vector to be added.
|
||||
* @return A new vector that is the result of adding this and the
|
||||
* other vector.
|
||||
*/
|
||||
/// Perform vector addition with another vector.
|
||||
/// @param other The vector to be added.
|
||||
/// @return A new vector that is the result of adding this and the
|
||||
/// other vector.
|
||||
Vector
|
||||
operator+(const Vector<T, N> &other) const
|
||||
{
|
||||
|
@ -248,12 +221,10 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Perform vector subtraction with another vector.
|
||||
* @param other The vector to be subtracted from this vector.
|
||||
* @return A new vector that is the result of subtracting the
|
||||
* other vector from this one.
|
||||
*/
|
||||
/// Perform vector subtraction with another vector.
|
||||
/// @param other The vector to be subtracted from this vector.
|
||||
/// @return A new vector that is the result of subtracting the
|
||||
/// other vector from this one.
|
||||
Vector
|
||||
operator-(const Vector<T, N> &other) const
|
||||
{
|
||||
|
@ -267,11 +238,9 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Perform scalar multiplication of this vector by some scale factor.
|
||||
* @param k The scaling value.
|
||||
* @return A new vector that is this vector scaled by k.
|
||||
*/
|
||||
/// Perform scalar multiplication of this vector by some scale factor.
|
||||
/// @param k The scaling value.
|
||||
/// @return A new vector that is this vector scaled by k.
|
||||
Vector
|
||||
operator*(const T k) const
|
||||
{
|
||||
|
@ -285,11 +254,9 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Perform scalar division of this vector by some scale factor.
|
||||
* @param k The scaling value
|
||||
* @return A new vector that is this vector scaled by 1/k.
|
||||
*/
|
||||
/// Perform scalar division of this vector by some scale factor.
|
||||
/// @param k The scaling value
|
||||
/// @return A new vector that is this vector scaled by 1/k.
|
||||
Vector
|
||||
operator/(const T k) const
|
||||
{
|
||||
|
@ -303,11 +270,9 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Compute the dot product between two vectors.
|
||||
* @param other The other vector.
|
||||
* @return A scalar value that is the dot product of the two vectors.
|
||||
*/
|
||||
/// Compute the dot product between two vectors.
|
||||
/// @param other The other vector.
|
||||
/// @return A scalar value that is the dot product of the two vectors.
|
||||
T
|
||||
operator*(const Vector<T, N> &other) const
|
||||
{
|
||||
|
@ -321,12 +286,10 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Compare two vectors for equality.
|
||||
* @param other The other vector.
|
||||
* @return Return true if all the components of both vectors are
|
||||
* within the tolerance value.
|
||||
*/
|
||||
/// Compare two vectors for equality.
|
||||
/// @param other The other vector.
|
||||
/// @return Return true if all the components of both vectors are
|
||||
/// within the tolerance value.
|
||||
bool
|
||||
operator==(const Vector<T, N> &other) const
|
||||
{
|
||||
|
@ -339,12 +302,10 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Compare two vectors for inequality.
|
||||
* @param other The other vector.
|
||||
* @return Return true if any of the components of both vectors are
|
||||
* not within the tolerance value.
|
||||
*/
|
||||
/// Compare two vectors for inequality.
|
||||
/// @param other The other vector.
|
||||
/// @return Return true if any of the components of both vectors are
|
||||
/// not within the tolerance value.
|
||||
bool
|
||||
operator!=(const Vector<T, N> &other) const
|
||||
{
|
||||
|
@ -352,11 +313,9 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Support array indexing into vector.
|
||||
* @param i The component index.
|
||||
* @return The value of the vector component at i.
|
||||
*/
|
||||
/// Support array indexing into vector.
|
||||
/// @param i The component index.
|
||||
/// @return The value of the vector component at i.
|
||||
T
|
||||
operator[](size_t i) const
|
||||
{
|
||||
|
@ -364,12 +323,10 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Support outputting vectors in the form "<i, j, ...>".
|
||||
* @param outs An output stream.
|
||||
* @param vec The vector to be formatted.
|
||||
* @return The output stream.
|
||||
*/
|
||||
/// Support outputting vectors in the form "<i, j, ...>".
|
||||
/// @param outs An output stream.
|
||||
/// @param vec The vector to be formatted.
|
||||
/// @return The output stream.
|
||||
friend std::ostream&
|
||||
operator<<(std::ostream& outs, const Vector<T, N>& vec)
|
||||
{
|
||||
|
@ -390,19 +347,37 @@ private:
|
|||
std::array<T, N> arr;
|
||||
};
|
||||
|
||||
///
|
||||
/// \defgroup vector_aliases Vector type aliases.
|
||||
///
|
||||
|
||||
/**
|
||||
* A number of shorthand aliases for vectors are provided. They follow
|
||||
* the form of VectorNt, where N is the dimension and t is the type.
|
||||
* For example, a 2D float vector is Vector2f.
|
||||
*/
|
||||
/// \ingroup vector_aliases
|
||||
/// A number of shorthand aliases for vectors are provided. They follow
|
||||
/// the form of VectorNt, where N is the dimension and t is the type.
|
||||
/// For example, a 2D float vector is Vector2f.
|
||||
|
||||
/// \ingroup vector_aliases
|
||||
/// @brief Type alias for a two-dimensional float vector.
|
||||
typedef Vector<float, 2> Vector2f;
|
||||
|
||||
/// \ingroup vector_aliases
|
||||
/// @brief Type alias for a three-dimensional float vector.
|
||||
typedef Vector<float, 3> Vector3f;
|
||||
|
||||
/// \ingroup vector_aliases
|
||||
/// @brief Type alias for a four-dimensional float vector.
|
||||
typedef Vector<float, 4> Vector4f;
|
||||
|
||||
/// \ingroup vector_aliases
|
||||
/// @brief Type alias for a two-dimensional double vector.
|
||||
typedef Vector<double, 2> Vector2d;
|
||||
|
||||
/// \ingroup vector_aliases
|
||||
/// @brief Type alias for a three-dimensional double vector.
|
||||
typedef Vector<double, 3> Vector3d;
|
||||
|
||||
/// \ingroup vector_aliases
|
||||
/// @brief Type alias for a four-dimensional double vector.
|
||||
typedef Vector<double, 4> Vector4d;
|
||||
|
||||
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
/// math.h provides certain useful mathematical functions.
|
||||
#ifndef __WRMATH_UTIL_MATH_H
|
||||
#define __WRMATH_UTIL_MATH_H
|
||||
|
||||
|
@ -9,56 +10,42 @@ namespace wr {
|
|||
namespace math {
|
||||
|
||||
|
||||
/**
|
||||
* Convert radians to degrees.
|
||||
* @param rads the angle in radians
|
||||
* @return the angle in degrees.
|
||||
*/
|
||||
/// Convert radians to degrees.
|
||||
/// @param rads the angle in radians
|
||||
/// @return the angle in degrees.
|
||||
float RadiansToDegreesF(float rads);
|
||||
|
||||
/**
|
||||
* Convert radians to degrees.
|
||||
* @param rads the angle in radians
|
||||
* @return the angle in degrees.
|
||||
*/
|
||||
/// Convert radians to degrees.
|
||||
/// @param rads the angle in radians
|
||||
/// @return the angle in degrees.
|
||||
double RadiansToDegreesD(double rads);
|
||||
|
||||
/**
|
||||
* Convert degrees to radians.
|
||||
* @param degrees the angle in degrees
|
||||
* @return the angle in radians.
|
||||
*/
|
||||
/// Convert degrees to radians.
|
||||
/// @param degrees the angle in degrees
|
||||
/// @return the angle in radians.
|
||||
float DegreesToRadiansF(float degrees);
|
||||
|
||||
/**
|
||||
* Convert degrees to radians.
|
||||
* @param degrees the angle in degrees
|
||||
* @return the angle in radians.
|
||||
*/
|
||||
/// Convert degrees to radians.
|
||||
/// @param degrees the angle in degrees
|
||||
/// @return the angle in radians.
|
||||
double DegreesToRadiansD(double degrees);
|
||||
|
||||
|
||||
/**
|
||||
* Get the default epsilon value.
|
||||
* @param epsilon The variable to store the epsilon value in.
|
||||
*/
|
||||
/// Get the default epsilon value.
|
||||
/// @param epsilon The variable to store the epsilon value in.
|
||||
void DefaultEpsilon(double &epsilon);
|
||||
|
||||
/**
|
||||
* Get the default epsilon value.
|
||||
* @param epsilon The variable to store the epsilon value in.
|
||||
*/
|
||||
/// Get the default epsilon value.
|
||||
/// @param epsilon The variable to store the epsilon value in.
|
||||
void DefaultEpsilon(float &epsilon);
|
||||
|
||||
|
||||
/**
|
||||
* Return whether the two values of type T are equal to within some tolerance.
|
||||
* @tparam T The type of value
|
||||
* @param a A value of type T used as the left-hand side of an equality check.
|
||||
* @param b A value of type T used as the right-hand side of an equality check.
|
||||
* @param epsilon The tolerance value.
|
||||
* @return Whether the two values are "close enough" to be considered equal.
|
||||
*/
|
||||
/// Return whether the two values of type T are equal to within some tolerance.
|
||||
/// @tparam T The type of value
|
||||
/// @param a A value of type T used as the left-hand side of an equality check.
|
||||
/// @param b A value of type T used as the right-hand side of an equality check.
|
||||
/// @param epsilon The tolerance value.
|
||||
/// @return Whether the two values are "close enough" to be considered equal.
|
||||
template <typename T>
|
||||
static T
|
||||
WithinTolerance(T a, T b, T epsilon)
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
#include <cmath>
|
||||
#include <wrmath/geom/vector.h>
|
||||
#include <wrmath/geom/orientation.h>
|
||||
|
||||
|
||||
|
@ -9,7 +9,7 @@ namespace geom {
|
|||
float
|
||||
Heading2f(Vector2f vec)
|
||||
{
|
||||
return vec.angle(Basis2f[Basis_i]);
|
||||
return vec.angle(Basis2f[Basis_x]);
|
||||
}
|
||||
|
||||
|
||||
|
@ -24,7 +24,7 @@ Heading3f(Vector3f vec)
|
|||
double
|
||||
Heading2d(Vector2d vec)
|
||||
{
|
||||
return vec.angle(Basis2d[Basis_i]);
|
||||
return vec.angle(Basis2d[Basis_x]);
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,108 @@
|
|||
#include <wrmath/geom/quaternion.h>
|
||||
|
||||
|
||||
namespace wr {
|
||||
namespace geom {
|
||||
|
||||
|
||||
Quaternionf
|
||||
quaternionf(Vector3f axis, float angle)
|
||||
{
|
||||
return Quaternionf(axis.unitVector() * std::sin(angle / 2.0),
|
||||
std::cos(angle / 2.0));
|
||||
}
|
||||
|
||||
|
||||
Quaterniond
|
||||
quaterniond(Vector3d axis, double angle)
|
||||
{
|
||||
return Quaterniond(axis.unitVector() * std::sin(angle / 2.0),
|
||||
std::cos(angle / 2.0));
|
||||
}
|
||||
|
||||
|
||||
Quaternionf
|
||||
quaternionf_from_euler(Vector3f euler)
|
||||
{
|
||||
float x, y, z, w;
|
||||
euler = euler / 2.0;
|
||||
|
||||
float cos_yaw = std::cos(euler[0]);
|
||||
float cos_pitch = std::cos(euler[1]);
|
||||
float cos_roll = std::cos(euler[2]);
|
||||
float sin_yaw = std::sin(euler[0]);
|
||||
float sin_pitch = std::sin(euler[1]);
|
||||
float sin_roll = std::sin(euler[2]);
|
||||
|
||||
x = (sin_yaw * cos_pitch * cos_roll) + (cos_yaw * sin_pitch * sin_roll);
|
||||
y = (sin_yaw * cos_pitch * sin_roll) - (cos_yaw * sin_pitch * cos_roll);
|
||||
z = (cos_yaw * cos_pitch * sin_roll) + (sin_yaw * sin_pitch * cos_roll);
|
||||
w = (cos_yaw * cos_pitch * cos_roll) - (sin_yaw * sin_pitch * sin_roll);
|
||||
|
||||
return Quaternionf(Vector4f{x, y, z, w});
|
||||
}
|
||||
|
||||
|
||||
Quaterniond
|
||||
quaterniond_from_euler(Vector3d euler)
|
||||
{
|
||||
double x, y, z, w;
|
||||
euler = euler / 2.0;
|
||||
|
||||
double cos_yaw = std::cos(euler[0]);
|
||||
double cos_pitch = std::cos(euler[1]);
|
||||
double cos_roll = std::cos(euler[2]);
|
||||
double sin_yaw = std::sin(euler[0]);
|
||||
double sin_pitch = std::sin(euler[1]);
|
||||
double sin_roll = std::sin(euler[2]);
|
||||
|
||||
x = (sin_yaw * cos_pitch * cos_roll) + (cos_yaw * sin_pitch * sin_roll);
|
||||
y = (sin_yaw * cos_pitch * sin_roll) - (cos_yaw * sin_pitch * cos_roll);
|
||||
z = (cos_yaw * cos_pitch * sin_roll) + (sin_yaw * sin_pitch * cos_roll);
|
||||
w = (cos_yaw * cos_pitch * cos_roll) - (sin_yaw * sin_pitch * sin_roll);
|
||||
|
||||
return Quaterniond(Vector4d{x, y, z, w});
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
Quaternion<T>
|
||||
LERP(Quaternion<T> p, Quaternion<T> q, T t)
|
||||
{
|
||||
return p + (q - p) * t;
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
Quaternion<T>
|
||||
ShortestSLERP(Quaternion<T> p, Quaternion<T> q, T t)
|
||||
{
|
||||
T innerProduct = p.dot(q);
|
||||
T sign = innerProduct >= 0.0 ? -1.0 : 1.0;
|
||||
T acip = std::acos(innerProduct);
|
||||
|
||||
return (p * std::sin((T)1.0 - t) * acip + p * sign * std::sin(t * acip)) / std::sin(acip);
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
Quaternion_SelfTest()
|
||||
{
|
||||
#ifndef NDEBUG
|
||||
Vector3f v {1.0, 0.0, 0.0};
|
||||
Vector3f yAxis {0.0, 1.0, 0.0};
|
||||
float angle = M_PI / 2;
|
||||
|
||||
Quaternionf p = quaternionf(yAxis, angle);
|
||||
Quaternionf q;
|
||||
Vector3f vr {0.0, 0.0, 1.0};
|
||||
|
||||
assert(p.isUnitQuaternion());
|
||||
assert(p.rotate(v) == vr);
|
||||
assert(p * q == p);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
} // namespace geom
|
||||
} // namespace wr
|
|
@ -7,6 +7,12 @@ using namespace std;
|
|||
using namespace wr;
|
||||
|
||||
|
||||
TEST(Quaternion, SelfTest)
|
||||
{
|
||||
geom::Quaternion_SelfTest();
|
||||
}
|
||||
|
||||
|
||||
TEST(Quaterniond, Addition)
|
||||
{
|
||||
geom::Quaterniond p(geom::Vector4d {1.0, -2.0, 1.0, 3.0});
|
||||
|
@ -250,6 +256,16 @@ TEST(QuaternionMiscellaneous, OutputStream)
|
|||
}
|
||||
|
||||
|
||||
TEST(QuaternionMiscellanous, InitializerConstructor)
|
||||
{
|
||||
geom::Quaternionf p {1.0, 1.0, 1.0, 1.0};
|
||||
geom::Quaternionf q(geom::Vector4f {1.0, 1.0, 1.0, 1.0});
|
||||
|
||||
EXPECT_EQ(p, q);
|
||||
EXPECT_FLOAT_EQ(p.norm(), 2.0);
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
main(int argc, char **argv)
|
||||
{
|
||||
|
|
Loading…
Reference in New Issue