Restructure project, start importing sc3 code.

This commit is contained in:
Kyle Isom 2023-10-18 23:44:05 -07:00
parent 3122ed6ac7
commit 5f3dc6e9f6
46 changed files with 2300 additions and 66 deletions

View File

@ -33,28 +33,36 @@ endif ()
add_compile_definitions(SCSL_DESKTOP_BUILD) add_compile_definitions(SCSL_DESKTOP_BUILD)
add_compile_definitions(SCSL_VERSION=${PROJECT_VERSION}) add_compile_definitions(SCSL_VERSION=${PROJECT_VERSION})
set(HEADER_FILES scsl.h set(HEADER_FILES
Arena.h include/scsl/scsl.h
Buffer.h include/scsl/Arena.h
Commander.h include/scsl/Buffer.h
Dictionary.h include/scsl/Commander.h
Exceptions.h include/scsl/Dictionary.h
Flag.h include/scsl/Exceptions.h
StringUtil.h include/scsl/Flag.h
TLV.h include/scsl/StringUtil.h
Test.h include/scsl/TLV.h
include/sctest/Assert.h
include/sctest/Report.h
) )
include_directories(include)
set(SOURCE_FILES set(SOURCE_FILES
Arena.cc src/sl/Arena.cc
Buffer.cc src/sl/Buffer.cc
Commander.cc src/sl/Commander.cc
Dictionary.cc src/sl/Dictionary.cc
Exceptions.cc src/sl/Exceptions.cc
Flag.cc src/sl/Flag.cc
StringUtil.cc src/sl/StringUtil.cc
TLV.cc src/sl/TLV.cc
Test.cc
src/test/Assert.cc
src/test/Report.cc
src/test/SimpleSuite.cc
) )
if (APPLE) if (APPLE)
@ -67,31 +75,27 @@ add_library(scsl
${SOURCE_FILES} ${HEADER_FILES}) ${SOURCE_FILES} ${HEADER_FILES})
endif() endif()
add_executable(phonebook phonebook.cc) add_executable(phonebook src/bin/phonebook.cc)
target_link_libraries(phonebook scsl) target_link_libraries(phonebook scsl)
include(CTest) include(CTest)
enable_testing() enable_testing()
add_executable(buffer_test bufferTest.cc) set(TEST_SOURCES)
target_link_libraries(buffer_test scsl) macro(generate_test name)
add_test(bufferTest buffer_test) add_executable(test_${name} test/${name}.cc ${TEST_SOURCES} ${ARGN})
target_link_libraries(test_${name} ${PROJECT_NAME})
target_include_directories(test_${name} PRIVATE test)
add_test(test_${name} test_${name})
endmacro()
add_executable(tlv_test tlvTest.cc) generate_test(buffer)
target_link_libraries(tlv_test scsl) generate_test(tlv)
add_test(tlvTest tlv_test) generate_test(dictionary)
generate_test(flag)
generate_test(stringutil)
add_executable(dictionary_test dictionaryTest.cc) generate_test(simple_suite_example)
target_link_libraries(dictionary_test scsl)
add_test(dictionaryTest dictionary_test)
add_executable(flag_test flagTest.cc)
target_link_libraries(flag_test scsl)
add_test(flagTest flag_test)
add_executable(stringutil_test stringutil_test.cc)
target_link_libraries(stringutil_test scsl)
add_test(stringutilTest stringutil_test)
include(CMakePackageConfigHelpers) include(CMakePackageConfigHelpers)
write_basic_package_version_file( write_basic_package_version_file(

108
include/scmp/geom/coord2d.h Executable file
View File

@ -0,0 +1,108 @@
/// coord2d.h defines 2D point and polar coordinate systems.
//
// Project: scccl
// File: include/math/coord2d.h
// Author: Kyle Isom
// Date: 2017-06-05
// Namespace: math::geom
//
// coord2d.h defines 2D coordinate classes and functions.
//
// Copyright 2017 Kyle Isom <kyle@imap.cc>
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SCMATH_GEOM_COORD2D_H
#define SCMATH_GEOM_COORD2D_H
#include <cmath>
#include <ostream>
#include <vector>
namespace scmath {
namespace geom {
class Point2D;
class Polar2D;
// Point2D is a logical grouping of a set of 2D cartesian coordinates.
class Point2D {
public:
int x, y;
// A Point2D can be initialised by setting its members to 0, by providing the
// x and y coordiantes, or through translation from a polar coordinate.
Point2D() : x(0), y(0) {}
Point2D(int _x, int _y) : x(_x), y(_y) {}
Point2D(const Polar2D&);
std::string ToString(void);
void ToPolar(Polar2D&);
// Rotate rotates the point by theta radians. Alternatively, a rotation
// can use this point as the centre, with a polar coordinate and a rotation
// amount (in radians). The latter is used to specify a central point
// of rotation with vertices specified as polar coordinates from the centre.
// Both forms take a reference to a Point2D to store the rotated point.
void Rotate(Point2D& rotated, double theta);
std::vector<Point2D> Rotate(std::vector<Polar2D>, double);
// Translate adds this point to the first argument, storing the result in the
// second argument.
void Translate(const Point2D& other, Point2D& translated);
// Distance returns the distance from this point to another.
int Distance(const Point2D& other);
Point2D operator+(const Point2D &rhs) const { return Point2D(x + rhs.x, y + rhs.y); }
Point2D operator-(const Point2D &rhs) const { return Point2D(x - rhs.x, y - rhs.y); }
Point2D operator*(const int k) const { return Point2D(x * k, y * k); }
bool operator==(const Point2D& rhs) const;
bool operator!=(const Point2D& rhs) const { return !(*this == rhs); }
friend std::ostream& operator<<(std::ostream& outs, const Point2D& pt);
};
// A Polar2D is a 2D polar coordinate, specified in terms of the radius from
// some origin and the angle from the positive X axis of a cartesian coordinate
// system.
class Polar2D {
public:
double r, theta;
// A Polar2D can be initialised as a zeroised polar coordinate, by specifying
// the radius and angle directly, or via conversion from a Point2D.
Polar2D() : r(0.0), theta(0.0) {}
Polar2D(double _r, double _theta) : r(_r), theta(_theta) {}
Polar2D(const Point2D&);
std::string ToString();
void ToPoint(Point2D&);
// Rotate rotates the polar coordinate by the number of radians, storing the result
// in the Polar2D argument.
void Rotate(Polar2D&, double);
// RotateAround rotates this point about by theta radians, storing the rotated point
// in result.
void RotateAround(const Point2D& other, Point2D& result, double tjeta);
bool operator==(const Polar2D&) const;
bool operator!=(const Polar2D& rhs) const { return !(*this == rhs); }
friend std::ostream& operator<<(std::ostream&, const Polar2D&);
};
} // end namespace geom
} // end namespace math
#endif

View File

@ -0,0 +1,88 @@
/**
* orientation.h concerns itself with computing the orientation of some
* vector with respect to a reference plane that is assumed to be the
* of the Earth.
*/
#ifndef SCMATH_GEOM_ORIENTATION_H
#define SCMATH_GEOM_ORIENTATION_H
namespace scmath {
namespace geom {
/// \defgroup basis Basis vector indices.
/// The following constants are provided as a convenience for indexing two-
/// and three-dimensional vectors.
/// \ingroup basis
/// Convenience constant for the x index.
constexpr uint8_t Basis_x = 0;
/// \ingroup basis
/// Convenience constant for the y index.
constexpr uint8_t Basis_y = 1;
/// \ingroup basis
/// Convenience constant for the z index.
constexpr uint8_t Basis_z = 2;
/// @brief Basis2d provides basis vectors for Vector2ds.
static const Vector2d Basis2d[] = {
Vector2d{1, 0},
Vector2d{0, 1},
};
/// @brief Basis2d provides basis vectors for Vector2fs.
static const Vector2f Basis2f[] = {
Vector2f{1, 0},
Vector2f{0, 1},
};
/// @brief Basis2d provides basis vectors for Vector3ds.
static const Vector3d Basis3d[] = {
Vector3d{1, 0, 0},
Vector3d{0, 1, 0},
Vector3d{0, 0, 1},
};
/// @brief Basis2d provides basis vectors for Vector3fs.
static const Vector3f Basis3f[] = {
Vector3f{1, 0, 0},
Vector3f{0, 1, 0},
Vector3f{0, 0, 1},
};
/// Heading2f returns a compass heading for a Vector2f.
/// @param vec A vector orientation.
/// @return The compass heading of the vector in radians.
float Heading2f(Vector2f vec);
/// Heading2d returns a compass heading for a Vector2d.
/// @param vec A vector orientation.
/// @return The compass heading of the vector in radians.
double Heading2d(Vector2d vec);
/// Heading3f returns a compass heading for a Vector2f.
/// @param vec A vector orientation.
/// @return The compass heading of the vector in radians.
float Heading3f(Vector3f vec);
/// Heading3d returns a compass heading for a Vector2f.
/// @param vec A vector orientation.
/// @return The compass heading of the vector in radians.
double Heading3d(Vector3d vec);
} // namespace geom
} // namespace math
#endif // __WRMATH_ORIENTATION_H

View File

@ -0,0 +1,520 @@
/// quaternion.h contains an implementation of quaternions suitable
/// for navigation in R3.
#ifndef SCMATH_QUATERNION_H
#define SCMATH_QUATERNION_H
#include <cassert>
#include <cmath>
#include <initializer_list>
#include <iostream>
#include <ostream>
#include <scccl/math/math.h>
#include <scccl/math/geom/vector.h>
/// math contains the shimmering clarity math library.
namespace scmath {
/// geom contains geometric classes and functions.
namespace geom {
/// @brief Quaternions provide a representation of orientation and rotations
/// in three dimensions.
///
/// Quaternions encode rotations in three-dimensional space. While technically
/// a quaternion is comprised of a real element and a complex vector<3>, for
/// the purposes of this library, it is modeled as a floating point 4D vector
/// of the form <w, x, y, z>, where x, y, and z represent an axis of rotation in
/// R3 and w the angle, in radians, of the rotation about that axis. Where Euler
/// angles are concerned, the ZYX (or yaw, pitch, roll) sequence is used.
///
/// For information on the underlying vector type, see the documentation for
/// wr::geom::Vector.
///
/// The constructors are primarily intended for intended operations; in practice,
/// the quaternionf() and quaterniond() functions are more useful for constructing
/// quaternions from vectors and angles.
///
/// Like vectors, quaternions carry an internal tolerance value ε that is used for
/// floating point comparisons. The math namespace contains the default values
/// used for this; generally, a tolerance of 0.0001 is considered appropriate for
/// the uses of this library. The tolerance can be explicitly set with the
/// setEpsilon method.
template<typename T>
class Quaternion {
public:
/// The default Quaternion constructor returns an identity quaternion.
Quaternion() : v(Vector<T, 3>{0.0, 0.0, 0.0}), w(1.0)
{
scmath::DefaultEpsilon(this->eps);
v.setEpsilon(this->eps);
};
/// A Quaternion may be initialised with a Vector<T, 3> axis of rotation
/// and an angle of rotation. This doesn't do the angle transforms to simplify
/// internal operations.
///
/// @param _axis A three-dimensional vector of the same type as the Quaternion.
/// @param _angle The angle of rotation about the axis of rotation.
Quaternion(Vector<T, 3> _axis, T _angle) : v(_axis), w(_angle)
{
this->constrainAngle();
scmath::DefaultEpsilon(this->eps);
v.setEpsilon(this->eps);
};
/// A Quaternion may be initialised with a Vector<T, 4> comprised of
/// the axis of rotation followed by the angle of rotation.
///
/// @param vector A vector in the form <w, x, y, z>.
Quaternion(Vector<T, 4> vector) :
v(Vector<T, 3>{vector[1], vector[2], vector[3]}),
w(vector[0])
{
this->constrainAngle();
scmath::DefaultEpsilon(this->eps);
v.setEpsilon(this->eps);
}
/// A Quaternion may be constructed with an initializer list of
/// type T, which must have exactly N elements.
///
/// @param ilst An initial set of values in the form <w, x, y, z>.
Quaternion(std::initializer_list<T> ilst)
{
auto it = ilst.begin();
this->v = Vector<T, 3>{it[1], it[2], it[3]};
this->w = it[0];
this->constrainAngle();
scmath::DefaultEpsilon(this->eps);
v.setEpsilon(this->eps);
}
/// Set the comparison tolerance for this quaternion.
///
/// @param epsilon A tolerance value.
void
setEpsilon(T epsilon)
{
this->eps = epsilon;
this->v.setEpsilon(epsilon);
}
/// Return the axis of rotation of this quaternion.
///
/// @return The axis of rotation of this quaternion.
Vector<T, 3>
axis() const
{
return this->v;
}
/// Return the angle of rotation of this quaternion.
///
/// @return the angle of rotation of this quaternion.
T
angle() const
{
return this->w;
}
/// Compute the dot product of two quaternions.
///
/// \param other Another quaternion.
/// \return The dot product between the two quaternions.
T
dot(const Quaternion<T> &other) const
{
double innerProduct = this->v[0] * other.v[0];
innerProduct += (this->v[1] * other.v[1]);
innerProduct += (this->v[2] * other.v[2]);
innerProduct += (this->w * other.w);
return innerProduct;
}
/// Compute the norm of a quaternion. Treating the Quaternion as a
/// Vector<T, 4>, it's the same as computing the magnitude.
///
/// @return A non-negative real number.
T
norm() const
{
T n = 0;
n += (this->v[0] * this->v[0]);
n += (this->v[1] * this->v[1]);
n += (this->v[2] * this->v[2]);
n += (this->w * this->w);
return std::sqrt(n);
}
/// Return the unit quaternion.
///
/// \return The unit quaternion.
Quaternion
unitQuaternion()
{
return *this / this->norm();
}
/// Compute the conjugate of a quaternion.
///
/// @return The conjugate of this quaternion.
Quaternion
conjugate() const
{
return Quaternion(Vector<T, 4>{this->w, -this->v[0], -this->v[1], -this->v[2]});
}
/// Compute the inverse of a quaternion.
///
/// @return The inverse of this quaternion.
Quaternion
inverse() const
{
T _norm = this->norm();
return this->conjugate() / (_norm * _norm);
}
/// Determine whether this is an identity quaternion.
///
/// \return true if this is an identity quaternion.
bool
isIdentity() const {
return this->v.isZero() &&
scmath::WithinTolerance(this->w, (T)1.0, this->eps);
}
/// Determine whether this is a unit quaternion.
///
/// @return true if this is a unit quaternion.
bool
isUnitQuaternion() const
{
return scmath::WithinTolerance(this->norm(), (T) 1.0, this->eps);
}
/// Return the quaternion as a Vector<T, 4>, with the axis of rotation
/// followed by the angle of rotation.
///
/// @return A vector representation of the quaternion.
Vector<T, 4>
asVector() const
{
return Vector<T, 4>{this->w, this->v[0], this->v[1], this->v[2]};
}
/// Rotate vector vr about this quaternion.
///
/// @param vr The vector to be rotated.
/// @return The rotated vector.
Vector<T, 3>
rotate(Vector<T, 3> vr) const
{
return (this->conjugate() * vr * (*this)).axis();
}
/// Return the Euler angles for this quaternion as a vector of
/// <yaw, pitch, roll>. Users of this function should watch out
/// for gimbal lock.
///
/// @return A vector<T, 3> containing <yaw, pitch, roll>
Vector<T, 3>
euler() const
{
T yaw, pitch, roll;
T a = this->w, a2 = a * a;
T b = this->v[0], b2 = b * b;
T c = this->v[1], c2 = c * c;
T d = this->v[2], d2 = d * d;
yaw = std::atan2(2 * ((a * b) + (c * d)), a2 - b2 - c2 + d2);
pitch = std::asin(2 * ((b * d) - (a * c)));
roll = std::atan2(2 * ((a * d) + (b * c)), a2 + b2 - c2 - d2);
return Vector<T, 3>{yaw, pitch, roll};
}
/// Perform quaternion addition with another quaternion.
///
/// @param other The quaternion to be added with this one.
/// @return The result of adding the two quaternions together.
Quaternion
operator+(const Quaternion<T> &other) const
{
return Quaternion(this->v + other.v, this->w + other.w);
}
/// Perform quaternion subtraction with another quaternion.
///
/// @param other The quaternion to be subtracted from this one.
/// @return The result of subtracting the other quaternion from this one.
Quaternion
operator-(const Quaternion<T> &other) const
{
return Quaternion(this->v - other.v, this->w - other.w);
}
/// Perform scalar multiplication.
///
/// @param k The scaling value.
/// @return A scaled quaternion.
Quaternion
operator*(const T k) const
{
return Quaternion(this->v * k, this->w * k);
}
/// Perform scalar division.
///
/// @param k The scalar divisor.
/// @return A scaled quaternion.
Quaternion
operator/(const T k) const
{
return Quaternion(this->v / k, this->w / k);
}
/// Perform quaternion Hamilton multiplication with a three-
/// dimensional vector; this is done by treating the vector
/// as a pure quaternion (e.g. with an angle of rotation of 0).
///
/// @param vector The vector to multiply with this quaternion.
/// @return The Hamilton product of the quaternion and vector.
Quaternion
operator*(const Vector<T, 3> &vector) const
{
return Quaternion(vector * this->w + this->v.cross(vector),
(T) 0.0);
}
/// Perform quaternion Hamilton multiplication.
///
/// @param other The other quaternion to multiply with this one.
/// @result The Hamilton product of the two quaternions.
Quaternion
operator*(const Quaternion<T> &other) const
{
T angle = (this->w * other.w) -
(this->v * other.v);
Vector<T, 3> axis = (other.v * this->w) +
(this->v * other.w) +
(this->v.cross(other.v));
return Quaternion(axis, angle);
}
/// Perform quaternion equality checking.
/// @param other The quaternion to check equality against.
/// @return True if the two quaternions are equal within their tolerance.
bool
operator==(const Quaternion<T> &other) const
{
return (this->v == other.v) &&
(scmath::WithinTolerance(this->w, other.w, this->eps));
}
/// Perform quaternion inequality checking.
///
/// @param other The quaternion to check inequality against.
/// @return True if the two quaternions are unequal within their tolerance.
bool
operator!=(const Quaternion<T> &other) const
{
return !(*this == other);
}
/// Support stream output of a quaternion in the form `a + <i, j, k>`.
/// \todo improve the formatting.
///
/// @param outs An output stream
/// @param q A quaternion
/// @return The output stream
friend std::ostream &
operator<<(std::ostream &outs, const Quaternion<T> &q)
{
outs << q.w << " + " << q.v;
return outs;
}
private:
static constexpr T minRotation = -4 * M_PI;
static constexpr T maxRotation = 4 * M_PI;
Vector<T, 3> v; // axis of rotation
T w; // angle of rotation
T eps;
void
constrainAngle()
{
if (this->w < 0.0) {
this->w = std::fmod(this->w, this->minRotation);
}
else {
this->w = std::fmod(this->w, this->maxRotation);
}
}
};
///
/// \defgroup quaternion_aliases Quaternion type aliases.
/// Type aliases are provided for float and double quaternions.
///
/// \ingroup quaternion_aliases
/// Type alias for a float Quaternion.
typedef Quaternion<float> Quaternionf;
/// \ingroup quaternion_aliases
/// Type alias for a double Quaternion.
typedef Quaternion<double> Quaterniond;
/// Return a float quaternion scaled appropriately from a vector and angle,
/// e.g. angle = cos(angle / 2), axis.unitVector() * sin(angle / 2).
///
/// @param axis The axis of rotation.
/// @param angle The angle of rotation.
/// @return A quaternion.
/// @relatesalso Quaternion
Quaternionf quaternionf(Vector3f axis, float angle);
/// Return a double quaternion scaled appropriately from a vector and angle,
/// e.g. angle = cos(angle / 2), axis.unitVector() * sin(angle / 2).
///
/// @param axis The axis of rotation.
/// @param angle The angle of rotation.
/// @return A quaternion.
/// @relatesalso Quaternion
Quaterniond quaterniond(Vector3d axis, double angle);
/// Return a double quaternion scaled appropriately from a vector and angle,
/// e.g. angle = cos(angle / 2), axis.unitVector() * sin(angle / 2).
///
/// @param axis The axis of rotation.
/// @param angle The angle of rotation.
/// @return A quaternion.
/// @relatesalso Quaternion
template <typename T>
Quaternion<T>
quaternion(Vector<T, 3> axis, T angle)
{
return Quaternion<T>(axis.unitVector() * std::sin(angle / (T)2.0),
std::cos(angle / (T)2.0));
}
/// Given a vector of Euler angles in ZYX sequence (e.g. yaw, pitch, roll),
/// return a quaternion.
///
/// @param euler A vector Euler angle in ZYX sequence.
/// @return A Quaternion representation of the orientation represented
/// by the Euler angles.
/// @relatesalso Quaternion
Quaternionf quaternionf_from_euler(Vector3f euler);
/// Given a vector of Euler angles in ZYX sequence (e.g. yaw, pitch, roll),
/// return a quaternion.
///
/// @param euler A vector Euler angle in ZYX sequence.
/// @return A Quaternion representation of the orientation represented
/// by the Euler angles.
/// @relatesalso Quaternion
Quaterniond quaterniond_from_euler(Vector3d euler);
/// LERP computes the linear interpolation of two quaternions at some
/// fraction of the distance between them.
///
/// \tparam T
/// \param p The starting quaternion.
/// \param q The ending quaternion.
/// \param t The fraction of the distance between the two quaternions to
/// interpolate.
/// \return A Quaternion representing the linear interpolation of the
/// two quaternions.
template <typename T>
Quaternion<T>
LERP(Quaternion<T> p, Quaternion<T> q, T t)
{
return (p + (q - p) * t).unitQuaternion();
}
/// ShortestSLERP computes the shortest distance spherical linear
/// interpolation between two quaternions at some fraction of the
/// distance between them.
///
/// \tparam T
/// \param p The starting quaternion.
/// \param q The ending quaternion.Short
/// \param t The fraction of the distance between the two quaternions
/// to interpolate.
/// \return A Quaternion representing the shortest path between two
/// quaternions.
template <typename T>
Quaternion<T>
ShortestSLERP(Quaternion<T> p, Quaternion<T> q, T t)
{
assert(p.isUnitQuaternion());
assert(q.isUnitQuaternion());
T dp = p.dot(q);
T sign = dp < 0.0 ? -1.0 : 1.0;
T omega = std::acos(dp * sign);
T sin_omega = std::sin(omega); // Compute once.
if (dp > 0.99999) {
return LERP(p, q * sign, t);
}
return (p * std::sin((1.0 - t) * omega) / sin_omega) +
(q * sign * std::sin(omega*t) / sin_omega);
}
/// Run a quick self test to exercise basic functionality of the Quaternion
/// class to verify correct operation. Note that if \#NDEBUG is defined, the
/// self test is disabled.
void Quaternion_SelfTest();
} // namespace geom
} // namespace wr
#endif // WRMATH_QUATERNION_H

422
include/scmp/geom/vector.h Normal file
View File

@ -0,0 +1,422 @@
//
// Project: scccl
// File: include/math/vectors.h
// Author: Kyle Isom
// Date: 2017-06-05
// Namespace: math::vectors.
//
// vectors.h defines the Vector2D class and associated functions in the
// namespace math::vectors.
//
// Copyright 2017 Kyle Isom <kyle@imap.cc>
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SCMATH_VECTORS_H
#define SCMATH_VECTORS_H
#include <array>
#include <cassert>
#include <cmath>
#include <initializer_list>
#include <ostream>
#include <iostream>
#include <scccl/math/math.h>
// This implementation is essentially a C++ translation of a Python library
// I wrote for Coursera's "Linear Algebra for Machine Learning" course. Many
// of the test vectors come from quiz questions in the class.
namespace scmath {
namespace geom {
/// @brief Vectors represent a direction and magnitude.
///
/// Vector provides a standard interface for dimensionless fixed-size
/// vectors. Once instantiated, they cannot be modified.
///
/// Note that while the class is templated, it's intended to be used with
/// floating-point types.
///
/// Vectors can be indexed like arrays, and they contain an epsilon value
/// that defines a tolerance for equality.
template <typename T, size_t N>
class Vector {
public:
/// The default constructor creates a unit vector for a given type
/// and size.
Vector()
{
T unitLength = (T)1.0 / std::sqrt(N);
for (size_t i = 0; i < N; i++) {
this->arr[i] = unitLength;
}
scmath::DefaultEpsilon(this->epsilon);
}
/// If given an initializer_list, the vector is created with
/// those values. There must be exactly N elements in the list.
/// @param ilst An intializer list with N elements of type T.
Vector(std::initializer_list<T> ilst)
{
assert(ilst.size() == N);
scmath::DefaultEpsilon(this->epsilon);
std::copy(ilst.begin(), ilst.end(), this->arr.begin());
}
/// Compute the length of the vector.
/// @return The length of the vector.
T magnitude() const {
T result = 0;
for (size_t i = 0; i < N; i++) {
result += (this->arr[i] * this->arr[i]);
}
return std::sqrt(result);
}
/// Set the tolerance for equality checks. At a minimum, this allows
/// for systemic errors in floating math arithmetic.
/// @param eps is the maximum difference between this vector and
/// another.
void
setEpsilon(T eps)
{
this->epsilon = eps;
}
/// Determine whether this is a zero vector.
/// @return true if the vector is zero.
bool
isZero() const
{
for (size_t i = 0; i < N; i++) {
if (!scmath::WithinTolerance(this->arr[i], (T)0.0, this->epsilon)) {
return false;
}
}
return true;
}
/// Obtain the unit vector for this vector.
/// @return The unit vector
Vector
unitVector() const
{
return *this / this->magnitude();
}
/// Determine if this is a unit vector, e.g. if its length is 1.
/// @return true if the vector is a unit vector.
bool
isUnitVector() const
{
return scmath::WithinTolerance(this->magnitude(), (T)1.0, this->epsilon);
}
/// Compute the angle between two other vectors.
/// @param other Another vector.
/// @return The angle in radians between the two vectors.
T
angle(const Vector<T, N> &other) const
{
Vector<T, N> unitA = this->unitVector();
Vector<T, N> unitB = other.unitVector();
// Can't compute angles with a zero vector.
assert(!this->isZero());
assert(!other.isZero());
return std::acos(unitA * unitB);
}
/// Determine whether two vectors are parallel.
/// @param other Another vector
/// @return True if the angle between the vectors is zero.
bool
isParallel(const Vector<T, N> &other) const
{
if (this->isZero() || other.isZero()) {
return true;
}
T angle = this->angle(other);
if (scmath::WithinTolerance(angle, (T)0.0, this->epsilon)) {
return true;
}
return false;
}
/// Determine if two vectors are orthogonal or perpendicular to each
/// other.
/// @param other Another vector
/// @return True if the two vectors are orthogonal.
bool
isOrthogonal(const Vector<T, N> &other) const
{
if (this->isZero() || other.isZero()) {
return true;
}
return scmath::WithinTolerance(*this * other, (T)0.0, this->epsilon);
}
/// Project this vector onto some basis vector.
/// @param basis The basis vector to be projected onto.
/// @return A vector that is the projection of this onto the basis
/// vector.
Vector
projectParallel(const Vector<T, N> &basis) const
{
Vector<T, N> unit_basis = basis.unitVector();
return unit_basis * (*this * unit_basis);
}
/// Project this vector perpendicularly onto some basis vector.
/// This is also called the rejection of the vector.
/// @param basis The basis vector to be projected onto.
/// @return A vector that is the orthogonal projection of this onto
/// the basis vector.
Vector
projectOrthogonal(const Vector<T, N> &basis)
{
Vector<T, N> spar = this->projectParallel(basis);
return *this - spar;
}
/// Compute the cross product of two vectors. This is only defined
/// over three-dimensional vectors.
/// @param other Another 3D vector.
/// @return The cross product vector.
Vector
cross(const Vector<T, N> &other) const
{
assert(N == 3);
return Vector<T, N> {
(this->arr[1] * other.arr[2]) - (other.arr[1] * this->arr[2]),
-((this->arr[0] * other.arr[2]) - (other.arr[0] * this->arr[2])),
(this->arr[0] * other.arr[1]) - (other.arr[0] * this->arr[1])
};
}
/// Perform vector addition with another vector.
/// @param other The vector to be added.
/// @return A new vector that is the result of adding this and the
/// other vector.
Vector
operator+(const Vector<T, N> &other) const
{
Vector<T, N> vec;
for (size_t i = 0; i < N; i++) {
vec.arr[i] = this->arr[i] + other.arr[i];
}
return vec;
}
/// Perform vector subtraction with another vector.
/// @param other The vector to be subtracted from this vector.
/// @return A new vector that is the result of subtracting the
/// other vector from this one.
Vector
operator-(const Vector<T, N> &other) const
{
Vector<T, N> vec;
for (size_t i = 0; i < N; i++) {
vec.arr[i] = this->arr[i] - other.arr[i];
}
return vec;
}
/// Perform scalar multiplication of this vector by some scale factor.
/// @param k The scaling value.
/// @return A new vector that is this vector scaled by k.
Vector
operator*(const T k) const
{
Vector<T, N> vec;
for (size_t i = 0; i < N; i++) {
vec.arr[i] = this->arr[i] * k;
}
return vec;
}
/// Perform scalar division of this vector by some scale factor.
/// @param k The scaling value
/// @return A new vector that is this vector scaled by 1/k.
Vector
operator/(const T k) const
{
Vector<T, N> vec;
for (size_t i = 0; i < N; i++) {
vec.arr[i] = this->arr[i] / k;
}
return vec;
}
/// Compute the dot product between two vectors.
/// @param other The other vector.
/// @return A scalar value that is the dot product of the two vectors.
T
operator*(const Vector<T, N> &other) const
{
T result = 0;
for (size_t i = 0; i < N; i++) {
result += (this->arr[i] * other.arr[i]);
}
return result;
}
/// Compare two vectors for equality.
/// @param other The other vector.
/// @return Return true if all the components of both vectors are
/// within the tolerance value.
bool
operator==(const Vector<T, N> &other) const
{
for (size_t i = 0; i<N; i++) {
if (!scmath::WithinTolerance(this->arr[i], other.arr[i], this->epsilon)) {
return false;
}
}
return true;
}
/// Compare two vectors for inequality.
/// @param other The other vector.
/// @return Return true if any of the components of both vectors are
/// not within the tolerance value.
bool
operator!=(const Vector<T, N> &other) const
{
return !(*this == other);
}
/// Support array indexing into vector.
///
/// Note that the values of the vector cannot be modified. Instead,
/// it's required to do something like the following:
///
/// ```
/// Vector3d a {1.0, 2.0, 3.0};
/// Vector3d b {a[0], a[1]*2.0, a[2]};
/// ```
///
/// @param i The component index.
/// @return The value of the vector component at i.
const T&
operator[](size_t i) const
{
return this->arr[i];
}
/// Support outputting vectors in the form "<i, j, ...>".
/// @param outs An output stream.
/// @param vec The vector to be formatted.
/// @return The output stream.
friend std::ostream&
operator<<(std::ostream& outs, const Vector<T, N>& vec)
{
outs << "<";
for (size_t i = 0; i < N; i++) {
outs << vec.arr[i];
if (i < (N-1)) {
outs << ", ";
}
}
outs << ">";
return outs;
}
private:
static const size_t dim = N;
T epsilon;
std::array<T, N> arr;
};
///
/// \defgroup vector_aliases Vector type aliases.
///
/// \ingroup vector_aliases
/// A number of shorthand aliases for vectors are provided. They follow
/// the form of VectorNt, where N is the dimension and t is the type.
/// For example, a 2D float vector is Vector2f.
/// \ingroup vector_aliases
/// @brief Type alias for a two-dimensional float vector.
typedef Vector<float, 2> Vector2f;
/// \ingroup vector_aliases
/// @brief Type alias for a three-dimensional float vector.
typedef Vector<float, 3> Vector3f;
/// \ingroup vector_aliases
/// @brief Type alias for a four-dimensional float vector.
typedef Vector<float, 4> Vector4f;
/// \ingroup vector_aliases
/// @brief Type alias for a two-dimensional double vector.
typedef Vector<double, 2> Vector2d;
/// \ingroup vector_aliases
/// @brief Type alias for a three-dimensional double vector.
typedef Vector<double, 3> Vector3d;
/// \ingroup vector_aliases
/// @brief Type alias for a four-dimensional double vector.
typedef Vector<double, 4> Vector4d;
} // namespace geom
} // namespace math
#endif // SCMATH_VECTORS_H_H

77
include/scmp/math.h Normal file
View File

@ -0,0 +1,77 @@
/// math.h provides certain useful mathematical functions.
#ifndef SCCCL_MATH_H
#define SCCCL_MATH_H
#include <cmath>
#include <vector>
namespace scmath {
// MAX_RADIAN is a precomputed 2 * M_PI, and MIN_RADIAN is -2 * M_PI.
constexpr double MAX_RADIAN = 2 * M_PI;
constexpr double MIN_RADIAN = -2 * M_PI;
constexpr double POS_HALF_RADIAN = M_PI / 2;
constexpr double NEG_HALF_RADIAN = -(M_PI / 2);
/// Roll m die of n sides, returning a vector of the dice.
std::vector<int> Die(int m, int n);
/// Roll m die of n sides, returning the total of the die.
int DieTotal(int m, int n);
/// Roll m die of n sides, and take the total of the top k die.
int BestDie(int k, int m, int n);
/// Convert radians to degrees.
/// @param rads the angle in radians
/// @return the angle in degrees.
float RadiansToDegreesF(float rads);
/// Convert radians to degrees.
/// @param rads the angle in radians
/// @return the angle in degrees.
double RadiansToDegreesD(double rads);
/// Convert degrees to radians.
/// @param degrees the angle in degrees
/// @return the angle in radians.
float DegreesToRadiansF(float degrees);
/// Convert degrees to radians.
/// @param degrees the angle in degrees
/// @return the angle in radians.
double DegreesToRadiansD(double degrees);
/// RotateRadians rotates theta0 by theta1 radians, wrapping the result to
/// MIN_RADIAN <= result <= MAX_RADIAN.
double RotateRadians(double theta0, double theta1);
/// Get the default epsilon value.
/// @param epsilon The variable to store the epsilon value in.
void DefaultEpsilon(double &epsilon);
/// Get the default epsilon value.
/// @param epsilon The variable to store the epsilon value in.
void DefaultEpsilon(float &epsilon);
/// Return whether the two values of type T are equal to within some tolerance.
/// @tparam T The type of value
/// @param a A value of type T used as the left-hand side of an equality check.
/// @param b A value of type T used as the right-hand side of an equality check.
/// @param epsilon The tolerance value.
/// @return Whether the two values are "close enough" to be considered equal.
template <typename T>
static T
WithinTolerance(T a, T b, T epsilon)
{
return std::abs(a - b) < epsilon;
}
} // namespace math
#endif //SCCCL_MATH_H

21
include/scmp/motion2d.h Normal file
View File

@ -0,0 +1,21 @@
//
// Created by Kyle Isom on 2/21/20.
//
#ifndef SCCCL_MOTION2D_H
#define SCCCL_MOTION2D_H
#include <scccl/math/geom/vector.h>
namespace scphys {
namespace basic {
scmath::geom::Vector2d Acceleration(double speed, double heading);
} // namespace basic
} // namespace phsyics
#endif //SCCCL_MOTION2D_H

48
include/sctest/Report.h Executable file
View File

@ -0,0 +1,48 @@
//
// Project: scccl
// File: include/test/Report.h
// Author: Kyle Isom
// Date: 2017-06-05
// Namespace: test
//
// Report.h defines a Report structure that contains information about
// the results of unit tests.
//
// Copyright 2017 Kyle Isom <kyle@imap.cc>
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef __SCTEST_REPORT_H
#define __SCTEST_REPORT_H
#include <chrono>
namespace sctest {
typedef struct _Report {
// Failing stores the number of failing tests; for tests added
// with AddTest, this is a test that returned false. For tests
// added with AddFailingTest, this is a test that returned true.
size_t Failing;
// Total is the number of tests registered during the last run.
size_t Total;
std::chrono::time_point<std::chrono::steady_clock> Start;
std::chrono::time_point<std::chrono::steady_clock> End;
std::chrono::duration<double> Duration;
_Report();
} Report;
} // end namespace test
#endif

87
include/sctest/SimpleSuite.h Executable file
View File

@ -0,0 +1,87 @@
//
// Project: scccl
// File: include/test/SimpleSuite.h
// Author: Kyle Isom
// Date: 2017-06-05
// Namespace: test
//
// SimpleSuite.h defines the SimpleSuite class for unit testing.
//
// Copyright 2017 Kyle Isom <kyle@imap.cc>
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef __SCTEST_SIMPLESUITE_H
#define __SCTEST_SIMPLESUITE_H
// SimpleSuite.h
// This header file defines the interface for a simple suite of tests.
#include <functional>
#include <string>
#include <vector>
#include <sctest/Report.h>
namespace sctest {
typedef struct {
std::string name;
std::function<bool(void)> test;
} TestCase;
class SimpleSuite {
public:
SimpleSuite();
// Silence suppresses output.
void Silence(void) { quiet = true; }
// Setup defines a setup function; this should be a predicate. This function
// is called at the start of the Run method, before tests are run.
void Setup(std::function<bool(void)> setupFn) { fnSetup = setupFn; }
// Teardown defines a teardown function; this should be a predicate. This
// function is called at the end of the Run method, after all tests have run.
void Teardown(std::function<bool(void)> teardownFn) { fnTeardown = teardownFn; }
// AddTest is used to add a test that is expected to return true.
void AddTest(std::string, std::function<bool(void)>);
// AddFailingTest is used to add a test that is expected to return false.
void AddFailingTest(std::string, std::function<bool(void)>);
bool Run(void);
// Reporting methods.
// Reset clears the report statistics.
void Reset(void) { report.Failing = report.Total = 0; hasRun = false; };
// IsReportReady returns true if a report is ready.
bool IsReportReady(void) { return hasRun; }
// Report returns a Report.
Report GetReport(void);
private:
bool quiet;
std::function<bool(void)> fnSetup, fnTeardown;
std::vector<TestCase> tests;
// Report functions.
Report report;
bool hasRun; // Have the tests been run yet?
};
} // end namespace test
#endif

50
include/sctest/checks.h Executable file
View File

@ -0,0 +1,50 @@
//
// Project: scccl
// File: include/test/checks.h
// Author: Kyle Isom
// Date: 2017-06-05
// Namespace: test.
//
// checks.h defines a number of macros (which are global in scope) for
// use in test functions that return bools.
//
// Copyright 2017 Kyle Isom <kyle@imap.cc>
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef __SCTEST_CHECKS_H
#define __SCTEST_CHECKS_H
#include <scccl/math/math.h>
namespace sctest {
// The following checks are designed as shortcuts that just return false on certain
// conditions.
#define SCTEST_CHECK(x) if (!(x)) { return false; }
#define SCTEST_CHECK_FALSE(x) if ((x)) { return false; }
#define SCTEST_CHECK_EQ(x, y) if ((x) != (y)) { return false; }
#define SCTEST_CHECK_NE(x, y) if ((x) == (y)) { return false; }
#define SCTEST_CHECK_ZERO(x) if ((x) != 0) { return false; }
#define SCTEST_CHECK_GTZ(x) if ((x) > 0) { return false; }
#define SCTEST_CHECK_GEZ(x) if ((x) >= 0) { return false; }
#define SCTEST_CHECK_LEZ(x) if ((x) <= 0) { return false; }
#define SCTEST_CHECK_LTZ(x) if ((x) < 0) { return false; }
#define SCTEST_CHECK_FEQ(x, y) { float eps; scmath::DefaultEpsilon(eps); if (!scmath::WithinTolerance((x), (y), eps)) { return false; }}
#define SCTEST_CHECK_DEQ(x, y) { double eps; scmath::DefaultEpsilon(eps); if (!scmath::WithinTolerance((x), (y), eps)) { return false; }}
} // namespace test
#endif

57
include/sctest/debug.h Executable file
View File

@ -0,0 +1,57 @@
//
// Project: scccl
// File: include/test/debug.h
// Author: Kyle Isom
// Date: 2017-06-05
// Namespace: test
//
// debug.h defines assertions and other debugging functions.
//
// Copyright 2017 Kyle Isom <kyle@imap.cc>
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#if 0
// Disabled for now.
#pragma once
#include <iostream>
#ifndef NDEBUG
#include <cstdlib>
#endif
namespace test {
// GenerateCoreDumps should be set at the beginning of the program, before
// multithreading. It is *not* threadsafe.
static bool GenerateCoreDumps = false;
static void
Assert(bool cond) {
#ifdef NDEBUG
std::cout << "Not a debug build, skipping assertion." << std::endl;
return;
#endif
if (!cond) {
std::cerr << "Assertion failed in " << __func__ << "(" << __FILE__ << ":" << __LINE__ << ")" << std::endl;
if (GenerateCoreDumps) {
std::abort();
}
else {
std::exit(1);
}
}
}
}
#endif

View File

@ -24,10 +24,9 @@
#include <string> #include <string>
using namespace std; using namespace std;
#include "Arena.h" #include <scsl/Arena.h>
#include "Commander.h" #include <scsl/Commander.h>
#include "Dictionary.h" #include <scsl/Dictionary.h>
#include "Flag.h"
using namespace scsl; using namespace scsl;
static const char *defaultPhonebook = "pb.dat"; static const char *defaultPhonebook = "pb.dat";

181
src/scmp/coord2d.cc Executable file
View File

@ -0,0 +1,181 @@
//
// Project: scccl
// File: src/math/geom2d.cpp
// Author: Kyle Isom
// Date: 2017-06-05
// Namespace: math::geom
//
// geom2d.cpp contains the implementation of 2D geometry in the math::geom
// namespace.
//
// Copyright 2017 Kyle Isom <kyle@imap.cc>
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cmath>
#include <iostream>
#include <vector>
#include <scccl/math/math.h>
#include <scccl/math/geom/coord2d.h>
// coord2d.cpp contains 2D geometric functions and data structures, such as
// cartesian and polar coordinates and rotations.
// TODO: deprecate Point2D in favour of Vector
namespace scmath {
namespace geom {
//
// Point2D
Point2D::Point2D(const Polar2D &pol)
: x(std::rint(std::cos(pol.theta) * pol.r)),
y(std::rint(std::sin(pol.theta) * pol.r)) {}
std::ostream&
operator<<(std::ostream& outs, const Point2D& pt)
{
outs << "(" << std::to_string(pt.x) << ", " << std::to_string(pt.y) << ")";
return outs;
}
std::string
Point2D::ToString()
{
return "(" + std::to_string(x) + ", " + std::to_string(y) + ")";
}
void
Point2D::ToPolar(Polar2D& pol)
{
pol.r = std::sqrt((x * x) + (y * y));
pol.theta = std::atan2(y, x);
}
void
Point2D::Rotate(Point2D& pt, double theta)
{
Polar2D pol(*this);
pol.Rotate(pol, theta);
pol.ToPoint(pt);
}
bool
Point2D::operator==(const Point2D& rhs) const
{
return (x == rhs.x) && (y == rhs.y);
}
void
Point2D::Translate(const Point2D& origin, Point2D &translated)
{
translated.x = origin.x + x;
translated.y = origin.y + y;
}
std::vector<Point2D>
Point2D::Rotate(std::vector<Polar2D> vertices, double theta)
{
std::vector<Point2D> rotated;
for (auto v : vertices) {
Point2D p;
v.RotateAround(*this, p, theta);
rotated.push_back(p) ;
}
return rotated;
}
int
Point2D::Distance(const Point2D& other)
{
auto dx = other.x - x;
auto dy = other.y - y;
return std::sqrt(dx * dx + dy + dy);
}
// Polar2D
Polar2D::Polar2D(const Point2D &pt)
: r(std::sqrt((pt.x * pt.x) + (pt.y * pt.y))),
theta(std::atan2(pt.y, pt.x)) {}
void
Polar2D::ToPoint(Point2D& pt)
{
pt.y = std::rint(std::sin(theta) * r);
pt.x = std::rint(std::cos(theta) * r);
}
std::string
Polar2D::ToString()
{
return "(" + std::to_string(r) + ", " + std::to_string(theta) + ")";
}
void
Polar2D::Rotate(Polar2D& rot, double delta)
{
rot.r = r;
rot.theta = RotateRadians(theta, delta);
}
bool
Polar2D::operator==(const Polar2D& rhs) const
{
static double eps = 0.0;
if (eps == 0.0) {
scmath::DefaultEpsilon(eps);
}
return scmath::WithinTolerance(r, rhs.r, eps) &&
scmath::WithinTolerance(theta, rhs.theta, eps);
}
void
Polar2D::RotateAround(const Point2D &origin, Point2D &point, double delta)
{
Polar2D rot;
this->Rotate(rot, delta);
rot.ToPoint(point);
point.Translate(origin, point);
}
std::ostream&
operator<<(std::ostream& outs, const Polar2D& pol)
{
outs << "(" << pol.r << ", " << pol.theta << ")";
return outs;
}
} // end namespace geom
} // end namespace math

128
src/scmp/math.cc Normal file
View File

@ -0,0 +1,128 @@
#include <algorithm>
#include <functional>
#include <numeric>
#include <random>
#include <vector>
#include <scccl/math/math.h>
namespace scmath {
std::vector<int>
Die(int m, int n)
{
std::uniform_int_distribution<> die(1, n);
std::random_device rd;
std::vector<int> dice;
int i = 0;
for (i = 0; i < m; i++) {
dice.push_back(die(rd));
}
return dice;
}
int
BestDie(int k, int m, int n)
{
auto dice = Die(m, n);
if (k < m) {
std::sort(dice.begin(), dice.end(), std::greater<int>());
dice.resize(static_cast<size_t>(k));
}
return std::accumulate(dice.begin(), dice.end(), 0);
}
int
DieTotal(int m, int n)
{
std::uniform_int_distribution<> die(1, n);
std::random_device rd;
int i = 0, total = 0;
for (i = 0; i < m; i++) {
total += die(rd);
}
return total;
}
float
RadiansToDegreesF(float rads)
{
return rads * (180.0 / M_PI);
}
double
RadiansToDegreesD(double rads)
{
return rads * (180.0 / M_PI);
}
float
DegreesToRadiansF(float degrees)
{
return degrees * M_PI / 180.0;
}
double
DegreesToRadiansD(double degrees)
{
return degrees * M_PI / 180.0;
}
double
RotateRadians(double theta0, double theta1)
{
auto dtheta = theta0 + theta1;
if (dtheta > M_PI) {
dtheta -= MAX_RADIAN;
} else if (dtheta < -M_PI) {
dtheta += MAX_RADIAN;
}
if ((dtheta < -M_PI) || (dtheta > M_PI)) {
return RotateRadians(dtheta, 0);
}
return dtheta;
}
const double Epsilon_double = 0.0001;
const float Epsilon_float = 0.0001;
void
DefaultEpsilon(double &epsilon)
{
epsilon = Epsilon_double;
}
void
DefaultEpsilon(float &epsilon)
{
epsilon = Epsilon_float;
}
} // namespace math

19
src/scmp/motion2d.cc Normal file
View File

@ -0,0 +1,19 @@
#include <cmath>
#include <scccl/phys/basic/motion2d.h>
namespace scphys {
namespace basic {
scmath::geom::Vector2d
Acceleration(double speed, double heading)
{
auto dx = std::cos(heading) * speed;
auto dy = std::sin(heading) * speed;
return scmath::geom::Vector2d({dx, dy});
}
} // namespace basic
} // namespace phys

40
src/scmp/orientation.cc Normal file
View File

@ -0,0 +1,40 @@
#include <scccl/math/geom/vector.h>
#include <scccl/math/geom/orientation.h>
namespace scmath {
namespace geom {
float
Heading2f(Vector2f vec)
{
return vec.angle(Basis2f[Basis_x]);
}
float
Heading3f(Vector3f vec)
{
Vector2f vec2f {vec[0], vec[1]};
return Heading2f(vec2f);
}
double
Heading2d(Vector2d vec)
{
return vec.angle(Basis2d[Basis_x]);
}
double
Heading3d(Vector3d vec)
{
Vector2d vec2d {vec[0], vec[1]};
return Heading2d(vec2d);
}
} // namespace geom
} // namespace math

91
src/scmp/quaternion.cc Normal file
View File

@ -0,0 +1,91 @@
#include <iostream>
#include <scccl/math/geom/quaternion.h>
namespace scmath {
namespace geom {
Quaternionf
quaternionf(Vector3f axis, float angle)
{
return Quaternionf(axis.unitVector() * std::sin(angle / 2.0),
std::cos(angle / 2.0));
}
Quaterniond
quaterniond(Vector3d axis, double angle)
{
return Quaterniond(axis.unitVector() * std::sin(angle / 2.0),
std::cos(angle / 2.0));
}
Quaternionf
quaternionf_from_euler(Vector3f euler)
{
float x, y, z, w;
euler = euler / 2.0;
float cos_yaw = std::cos(euler[0]);
float cos_pitch = std::cos(euler[1]);
float cos_roll = std::cos(euler[2]);
float sin_yaw = std::sin(euler[0]);
float sin_pitch = std::sin(euler[1]);
float sin_roll = std::sin(euler[2]);
x = (sin_yaw * cos_pitch * cos_roll) + (cos_yaw * sin_pitch * sin_roll);
y = (sin_yaw * cos_pitch * sin_roll) - (cos_yaw * sin_pitch * cos_roll);
z = (cos_yaw * cos_pitch * sin_roll) + (sin_yaw * sin_pitch * cos_roll);
w = (cos_yaw * cos_pitch * cos_roll) - (sin_yaw * sin_pitch * sin_roll);
return Quaternionf(Vector4f{w, x, y, z});
}
Quaterniond
quaterniond_from_euler(Vector3d euler)
{
double x, y, z, w;
euler = euler / 2.0;
double cos_yaw = std::cos(euler[0]);
double cos_pitch = std::cos(euler[1]);
double cos_roll = std::cos(euler[2]);
double sin_yaw = std::sin(euler[0]);
double sin_pitch = std::sin(euler[1]);
double sin_roll = std::sin(euler[2]);
x = (sin_yaw * cos_pitch * cos_roll) + (cos_yaw * sin_pitch * sin_roll);
y = (sin_yaw * cos_pitch * sin_roll) - (cos_yaw * sin_pitch * cos_roll);
z = (cos_yaw * cos_pitch * sin_roll) + (sin_yaw * sin_pitch * cos_roll);
w = (cos_yaw * cos_pitch * cos_roll) - (sin_yaw * sin_pitch * sin_roll);
return Quaterniond(Vector4d{w, x, y, z});
}
void
Quaternion_SelfTest()
{
#ifndef NDEBUG
Vector3f v {1.0, 0.0, 0.0};
Vector3f yAxis {0.0, 1.0, 0.0};
float angle = M_PI / 2;
Quaternionf p = quaternionf(yAxis, angle);
Quaternionf q;
Vector3f vr {0.0, 0.0, 1.0};
assert(p.isUnitQuaternion());
std::cerr << p.rotate(v) << std::endl;
assert(p.rotate(v) == vr);
assert(p * q == p);
#endif
}
} // namespace geom
} // namespace math

View File

@ -36,7 +36,7 @@
#include <ios> #include <ios>
#include "Arena.h" #include <scsl/Arena.h>
namespace scsl { namespace scsl {

View File

@ -26,7 +26,8 @@
#include <ios> #include <ios>
#include <iostream> #include <iostream>
#include "Buffer.h" #include <scsl/Buffer.h>
namespace scsl { namespace scsl {

View File

@ -22,7 +22,7 @@
#include <iostream> #include <iostream>
#include "Commander.h" #include <scsl/Commander.h>
namespace scsl { namespace scsl {

View File

@ -24,7 +24,7 @@
#include <cstdlib> #include <cstdlib>
#include <cstring> #include <cstring>
#include "Dictionary.h" #include <scsl/Dictionary.h>
#if defined(SCSL_DESKTOP_BUILD) #if defined(SCSL_DESKTOP_BUILD)
#include <iostream> #include <iostream>

View File

@ -20,7 +20,7 @@
/// PERFORMANCE OF THIS SOFTWARE. /// PERFORMANCE OF THIS SOFTWARE.
/// ///
#include "Exceptions.h" #include <scsl/Exceptions.h>
namespace scsl { namespace scsl {

View File

@ -25,8 +25,8 @@
#include <regex> #include <regex>
#include <vector> #include <vector>
#include "Flag.h" #include <scsl/Flag.h>
#include "StringUtil.h" #include <scsl/StringUtil.h>
namespace scsl { namespace scsl {

76
src/sl/Roll.cc Normal file
View File

@ -0,0 +1,76 @@
#include <iostream>
#include <string>
#include <vector>
#include <scccl/math/math.h>
using namespace std;
using namespace scmath;
static void
rollDie(char *s)
{
int m = 0, n = 0;
int i = 0;
bool readSides = false;
while (s[i] != '\0') {
if (s[i] != 'd' && !isdigit(s[i])) {
cerr << "Invalid die specification!" << endl;
return;
}
if (readSides) {
if (s[i] == 'd') {
cerr << "Invalid die specification!" << endl;
return;
}
n *= 10;
n += (s[i] - 0x30);
} else {
if (s[i] == 'd') {
readSides = true;
} else {
m *= 10;
m += (s[i] - 0x30);
}
}
i++;
}
if (m == 0) {
m = 1;
}
cout << s << ": " << DieTotal(m, n) << endl;
}
static void
rollPlayer()
{
vector<string> statNames = {"STR", "CON", "DEX", "INT", "PER"};
vector<int> statRolls;
for (size_t i = 0; i < statNames.size(); i++) {
statRolls.push_back(BestDie(3, 4, 6));
}
for (size_t i = 0; i < statNames.size(); i++) {
cout << statNames[i] << ": " << statRolls[i] << endl;
}
}
int
main(int argc, char *argv[])
{
for (int i = 1; i < argc; i++) {
if (string(argv[i]) == "player") {
rollPlayer();
} else {
rollDie(argv[i]);
}
}
}

View File

@ -24,7 +24,7 @@
#include <iostream> #include <iostream>
#include <sstream> #include <sstream>
#include "StringUtil.h" #include <scsl/StringUtil.h>
namespace scsl { namespace scsl {

View File

@ -23,7 +23,7 @@
#include <cassert> #include <cassert>
#include <cstring> #include <cstring>
#include "TLV.h" #include <scsl/TLV.h>
using namespace scsl; using namespace scsl;

View File

@ -20,8 +20,8 @@
/// PERFORMANCE OF THIS SOFTWARE. /// PERFORMANCE OF THIS SOFTWARE.
/// ///
#include "Exceptions.h" #include <scsl/Exceptions.h>
#include "Test.h" #include <sctest/Assert.h>
#include <cassert> #include <cassert>
#include <iostream> #include <iostream>

37
src/test/Report.cc Normal file
View File

@ -0,0 +1,37 @@
///
/// \file src/test/Report.cpp
/// \author Kyle Isom
/// \date 2017-06-07
///
/// \brief Defines a Report structure that contains information about
/// the results of unit tests.
///
/// Copyright 2017 K. Isom <kyle@imap.cc>
///
/// Permission to use, copy, modify, and/or distribute this software for
/// any purpose with or without fee is hereby granted, provided that
/// the above copyright notice and this permission notice appear in all /// copies.
///
/// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
/// WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
/// WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
/// AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
/// DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
/// OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
/// TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
/// PERFORMANCE OF THIS SOFTWARE.
#include <chrono>
#include <sctest/Report.h>
namespace sctest {
_Report::_Report()
: Failing (0), Total(0), Start(std::chrono::steady_clock::now()),
End(std::chrono::steady_clock::now()), Duration(0) {}
} // end namespace test

108
src/test/SimpleSuite.cc Executable file
View File

@ -0,0 +1,108 @@
///
/// \file SimpleSuite.cc
/// \author K. Isom <kyle@imap.cc>
/// \date 2017-06-05
/// \brief Defines a simple unit testing framework.
///
/// Copyright 2017 K. Isom <kyle@imap.cc>
///
/// Permission to use, copy, modify, and/or distribute this software for
/// any purpose with or without fee is hereby granted, provided that
/// the above copyright notice and this permission notice appear in all /// copies.
///
/// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
/// WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
/// WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
/// AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
/// DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
/// OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
/// TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
/// PERFORMANCE OF THIS SOFTWARE.
///
#include <chrono>
#include <iostream>
#include <sctest/SimpleSuite.h>
namespace sctest {
#define unless(cond) if (!(cond))
static bool
stub()
{ return true; }
SimpleSuite::SimpleSuite()
: quiet(false), fnSetup(stub), fnTeardown(stub), tests(),
report(), hasRun(false)
{
}
void
SimpleSuite::AddTest(std::string name, std::function<bool()> test)
{
TestCase test_case = {name, test};
tests.push_back(test_case);
}
void
SimpleSuite::AddFailingTest(std::string name, std::function<bool()> test)
{
// auto ntest = [&test]() { return !test(); };
TestCase test_case = {name, [&test]() { return !test(); }};
tests.push_back(test_case);
}
bool
SimpleSuite::Run()
{
report.Start = std::chrono::steady_clock::now();
unless(quiet) { std::cout << "Setting up the tests.\n"; }
unless(fnSetup()) { return false; }
// Reset the failed test counts.
report.Failing = 0;
bool result = true;
hasRun = true;
report.Total = tests.size();
for (size_t i = 0; i < report.Total && result; i++) {
TestCase tc = tests.at(i);
unless(quiet) {
std::cout << "[" << i + 1 << "/" << report.Total << "] Running test " << tc.name << ": ";
}
result = tc.test();
if (quiet) { continue; }
if (result) {
std::cout << "[PASS]";
} else {
std::cout << "[FAIL]";
report.Failing++;
}
std::cout << "\n";
}
unless(quiet) { std::cout << "Tearing down the tests.\n"; }
unless(fnTeardown()) { return false; }
report.End = std::chrono::steady_clock::now();
return result;
}
Report
SimpleSuite::GetReport()
{
return report;
}
} // end namespace sctest

View File

@ -1,7 +1,7 @@
#include <cassert> #include <cassert>
#include <iostream> #include <iostream>
#include "Buffer.h" #include <scsl/Buffer.h>
using namespace scsl; using namespace scsl;

View File

@ -1,9 +1,9 @@
#include <iostream> #include <iostream>
#include "Arena.h" #include <scsl/Arena.h>
#include "Dictionary.h" #include <scsl/Dictionary.h>
#include "Test.h" #include <sctest/Assert.h>
#include "testFixtures.h" #include "test_fixtures.h"
using namespace scsl; using namespace scsl;

View File

@ -4,8 +4,8 @@
#include <iostream> #include <iostream>
#include "Flag.h" #include <scsl/Flag.h>
#include "Test.h" #include <sctest/Assert.h>
using namespace scsl; using namespace scsl;

72
test/simple_suite_example.cc Executable file
View File

@ -0,0 +1,72 @@
//
// Project: scccl
// File: test/math/simple_suite_example.cpp
// Author: Kyle Isom
// Date: 2017-06-05
//
// simple_suite_example demonstrates the usage of the SimpleSuite test class
// and serves to unit test the unit tester (qui custodiet ipsos custodes)?
//
// Copyright 2017 Kyle Isom <kyle@imap.cc>
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include <sctest/SimpleSuite.h>
static bool
prepareTests()
{
std::cout << "time passes...\n";
std::cout << "tests are ready.\n";
return true;
}
static bool
destroyTests()
{
std::cout << "time passes...\n" ;
std::cout << "tests have been destroyed.\n";
return true;
}
static bool addOne() { return 1 + 1 == 2; }
static bool four() { return 2 + 2 == 4; }
static bool nope() { return 2 + 2 == 5; }
int
main()
{
sctest::SimpleSuite TestSuite;
TestSuite.Setup(prepareTests);
TestSuite.Teardown(destroyTests);
TestSuite.AddTest("1 + 1", addOne);
TestSuite.AddTest("fourness", four);
TestSuite.AddFailingTest("self-evident truth", nope);
bool result = TestSuite.Run();
if (TestSuite.IsReportReady()) {
auto report = TestSuite.GetReport();
std::cout << report.Failing << " / " << report.Total;
std::cout << " tests failed.\n";
}
if (result) {
return 0;
}
else {
return 1;
}
}

View File

@ -24,8 +24,8 @@
#include <iostream> #include <iostream>
#include <sstream> #include <sstream>
#include "StringUtil.h" #include <scsl/StringUtil.h>
#include "Test.h" #include <sctest/Assert.h>
using namespace scsl; using namespace scsl;

View File

@ -3,7 +3,7 @@
#include <string.h> #include <string.h>
#include "TLV.h" #include <scsl/TLV.h>
#define ARENA_SIZE 128 #define ARENA_SIZE 128

View File

@ -3,11 +3,11 @@
#include <exception> #include <exception>
#include <iostream> #include <iostream>
#include "Arena.h" #include <scsl/Arena.h>
#include "Test.h" #include <scsl/TLV.h>
#include "TLV.h" #include <sctest/Assert.h>
#include "testFixtures.h" #include "test_fixtures.h"
using namespace scsl; using namespace scsl;