scsl/test/quaternion.cc

478 lines
11 KiB
C++

#include <cmath>
#include <sstream>
#include <scmp/geom/Quaternion.h>
#include <sctest/Checks.h>
#include <sctest/SimpleSuite.h>
using namespace std;
using namespace scmp;
using namespace sctest;
static bool
Quaternion_SelfTest()
{
geom::Quaternion_SelfTest();
return true;
}
static bool
Quaterniond_Addition()
{
geom::Quaterniond p(geom::Vector4d {3.0, 1.0, -2.0, 1.0});
geom::Quaterniond q(geom::Vector4d {2.0, -1.0, 2.0, 3.0});
geom::Quaterniond expected(geom::Vector4d{5.0, 0.0, 0.0, 4.0});
SCTEST_CHECK_EQ(p + q, expected);
SCTEST_CHECK_EQ(expected - q, p);
SCTEST_CHECK_NE(expected - q, q); // exercise !=
return true;
}
static bool
Quaterniond_Conjugate()
{
geom::Quaterniond p {2.0, 3.0, 4.0, 5.0};
geom::Quaterniond q {2.0, -3.0, -4.0, -5.0};
SCTEST_CHECK_EQ(p.conjugate(), q);
return true;
}
static bool
Quaterniond_Euler()
{
geom::Quaterniond p = geom::quaterniond(geom::Vector3d{5.037992718099102, 6.212303632611285, 1.7056797335843106}, M_PI/4.0);
geom::Quaterniond q = geom::quaterniond_from_euler(p.euler());
SCTEST_CHECK_EQ(p, q);
return true;
}
static bool
Quaterniond_Identity()
{
geom::Quaterniond p {3.0, 1.0, -2.0, 1.0};
geom::Quaterniond q;
SCTEST_CHECK(q.isIdentity());
SCTEST_CHECK_EQ(p * q, p);
return true;
}
static bool
Quaterniond_Inverse()
{
geom::Quaterniond p {2.0, 3.0, 4.0, 5.0};
geom::Quaterniond q {0.03704, -0.05556, -0.07407, -0.09259};
SCTEST_CHECK_EQ(p.inverse(), q);
return true;
}
static bool
Quaterniond_Norm()
{
geom::Quaterniond p {5.563199889674063, 0.9899139811480784, 9.387110042325054, 6.161341707794767};
double norm = 12.57016663729933;
SCTEST_CHECK_DEQ(p.norm(), norm);
return true;
}
static bool
Quaterniond_Product()
{
geom::Quaterniond p {3.0, 1.0, -2.0, 1.0};
geom::Quaterniond q {2.0, -1.0, 2.0, 3.0};
geom::Quaterniond expected {8.0, -9.0, -2.0, 11.0};
SCTEST_CHECK_EQ(p * q, expected);
return true;
}
static bool
Quaterniond_Rotate()
{
// This test aims to rotate a vector v using a quaternion.
// c.f. https://math.stackexchange.com/questions/40164/how-do-you-rotate-a-vector-by-a-unit-quaternion
// If we assume a standard IMU frame of reference following the
// right hand rule:
// + The x axis points toward magnetic north
// + The y axis points toward magnentic west
// + The z axis points toward the sky
// Given a vector pointing due north, rotating by 90º about
// the y-axis should leave us pointing toward the sky.
geom::Vector3d v {1.0, 0.0, 0.0}; // a vector pointed north
geom::Vector3d yAxis {0.0, 1.0, 0.0}; // a vector representing the y axis.
double angle = M_PI / 2; // 90º rotation
// A quaternion representing a 90º rotation about the y axis.
geom::Quaterniond p = geom::quaterniond(yAxis, angle);
geom::Vector3d vr {0.0, 0.0, 1.0}; // expected rotated vector.
// A rotation quaternion should be a unit quaternion.
SCTEST_CHECK(p.isUnitQuaternion());
SCTEST_CHECK_EQ(p.rotate(v), vr);
return true;
}
static bool
Quaterniond_ShortestSLERP()
{
// Our starting point is an Orientation that is yawed 45° - our
// Orientation is pointed π/4 radians in the X axis.
geom::Quaterniond p {0.92388, 0.382683, 0, 0};
// Our ending point is an Orientation that is yawed -45° - or
// pointed -π/4 radians in the X axis.
geom::Quaterniond q {0.92388, -0.382683, 0, 0};
// The halfway point should be oriented midway about the X axis. It turns
// out this is an identity quaternion.
geom::Quaterniond r;
SCTEST_CHECK_EQ(geom::ShortestSLERP(p, q, 0.0), p);
SCTEST_CHECK_EQ(geom::ShortestSLERP(p, q, 1.0), q);
SCTEST_CHECK_EQ(geom::ShortestSLERP(p, q, 0.5), r);
return true;
}
static bool
Quaterniond_ShortestSLERP2()
{
// Start with an Orientation pointing forward, all Euler angles
// set to 0.
geom::Quaterniond start {1.0, 0.0, 0.0, 0.0};
// The goal is to end up face up, or 90º pitch (still facing forward).
geom::Quaterniond end {0.707107, 0, -0.707107, 0};
// Halfway to the endpoint should be a 45º pitch.
geom::Quaterniond halfway {0.92388, 0, -0.382683, 0};
// 2/3 of the way should be 60º pitch.
geom::Quaterniond twoThirds {0.866025, 0, -0.5, 0};
SCTEST_CHECK_EQ(ShortestSLERP(start, end, 0.0), start);
SCTEST_CHECK_EQ(ShortestSLERP(start, end, 1.0), end);
SCTEST_CHECK_EQ(ShortestSLERP(start, end, 0.5), halfway);
SCTEST_CHECK_EQ(ShortestSLERP(start, end, 2.0/3.0), twoThirds);
return true;
}
static bool
Quaterniond_Unit()
{
geom::Quaterniond q {0.0, 0.5773502691896258, 0.5773502691896258, 0.5773502691896258};
SCTEST_CHECK(q.isUnitQuaternion());
return true;
}
static bool
Quaterniond_UtilityCreator()
{
geom::Vector3d v {1.0, 1.0, 1.0};
double w = M_PI;
geom::Quaterniond p = geom::quaterniond(v, w);
geom::Quaterniond q {0.0, 0.5773502691896258, 0.5773502691896258, 0.5773502691896258};
SCTEST_CHECK_EQ(p, q);
return true;
}
static bool
Quaternionf_Addition()
{
geom::Quaternionf p {3.0, 1.0, -2.0, 1.0};
geom::Quaternionf q {2.0, -1.0, 2.0, 3.0};
geom::Quaternionf expected {5.0, 0.0, 0.0, 4.0};
SCTEST_CHECK_EQ(p + q, expected);
SCTEST_CHECK_EQ(expected - q, p);
SCTEST_CHECK_NE(expected - q, q); // exercise !=
return true;
}
static bool
Quaternionf_Conjugate()
{
geom::Quaternionf p {2.0, 3.0, 4.0, 5.0};
geom::Quaternionf q {2.0, -3.0, -4.0, -5.0};
SCTEST_CHECK_EQ(p.conjugate(), q);
return true;
}
static bool
Quaternionf_Euler()
{
geom::Quaternionf p = geom::quaternionf(geom::Vector3f{5.037992718099102, 6.212303632611285, 1.7056797335843106}, M_PI/4.0);
geom::Quaternionf q = geom::quaternionf_from_euler(p.euler());
SCTEST_CHECK_EQ(p, q);
return true;
}
static bool
Quaternionf_Identity()
{
geom::Quaternionf p {1.0, 3.0, 1.0, -2.0};
geom::Quaternionf q;
SCTEST_CHECK_EQ(p * q, p);
return true;
}
static bool
Quaternionf_Inverse()
{
geom::Quaternionf p {2.0, 3.0, 4.0, 5.0};
geom::Quaternionf q {0.03704, -0.05556, -0.07407, -0.09259};
SCTEST_CHECK_EQ(p.inverse(), q);
return true;
}
static bool
Quaternionf_Norm()
{
geom::Quaternionf p {0.9899139811480784, 9.387110042325054, 6.161341707794767, 5.563199889674063};
float norm = 12.57016663729933;
SCTEST_CHECK_FEQ(p.norm(), norm);
return true;
}
static bool
Quaternionf_Product()
{
geom::Quaternionf p {3.0, 1.0, -2.0, 1.0};
geom::Quaternionf q {2.0, -1.0, 2.0, 3.0};
geom::Quaternionf expected {8.0, -9.0, -2.0, 11.0};
SCTEST_CHECK_EQ(p * q, expected);
return true;
}
static bool
Quaternionf_Rotate()
{
geom::Vector3f v {1.0, 0.0, 0.0};
geom::Vector3f yAxis {0.0, 1.0, 0.0};
float angle = M_PI / 2;
geom::Quaternionf p = geom::quaternionf(yAxis, angle);
geom::Vector3f vr {0.0, 0.0, 1.0};
SCTEST_CHECK(p.isUnitQuaternion());
SCTEST_CHECK_EQ(p.rotate(v), vr);
return true;
}
static bool
Quaternionf_ShortestSLERP()
{
// Our starting point is an Orientation that is yawed 45° - our
// Orientation is pointed π/4 radians in the X axis.
geom::Quaternionf p {0.92388, 0.382683, 0, 0};
// Our ending point is an Orientation that is yawed -45° - or
// pointed -π/4 radians in the X axis.
geom::Quaternionf q {0.92388, -0.382683, 0, 0};
// The halfway point should be oriented midway about the X axis. It turns
// out this is an identity quaternion.
geom::Quaternionf r;
SCTEST_CHECK_EQ(geom::ShortestSLERP(p, q, (float)0.0), p);
SCTEST_CHECK_EQ(geom::ShortestSLERP(p, q, (float)1.0), q);
SCTEST_CHECK_EQ(geom::ShortestSLERP(p, q, (float)0.5), r);
return true;
}
static bool
Quaternionf_ShortestSLERP2()
{
// Start with an Orientation pointing forward, all Euler angles
// set to 0.
geom::Quaternionf start {1.0, 0.0, 0.0, 0.0};
// The goal is to end up face up, or 90º pitch (still facing forward).
geom::Quaternionf end {0.707107, 0, -0.707107, 0};
// Halfway to the endpoint should be a 45º pitch.
geom::Quaternionf halfway {0.92388, 0, -0.382683, 0};
// 2/3 of the way should be 60º pitch.
geom::Quaternionf twoThirds {0.866025, 0, -0.5, 0};
SCTEST_CHECK_EQ(ShortestSLERP(start, end, (float)0.0), start);
SCTEST_CHECK_EQ(ShortestSLERP(start, end, (float)1.0), end);
SCTEST_CHECK_EQ(ShortestSLERP(start, end, (float)0.5), halfway);
SCTEST_CHECK_EQ(ShortestSLERP(start, end, (float)(2.0/3.0)), twoThirds);
return true;
}
static bool
Quaternionf_Unit()
{
geom::Quaternionf q {0.0, 0.5773502691896258, 0.5773502691896258, 0.5773502691896258};
SCTEST_CHECK(q.isUnitQuaternion());
return true;
}
static bool
Quaternionf_UtilityCreator()
{
geom::Vector3f v {1.0, 1.0, 1.0};
float w = M_PI;
geom::Quaternionf p = geom::quaternionf(v, w);
geom::Quaternionf q {0.0, 0.5773502691896258, 0.5773502691896258, 0.5773502691896258};
SCTEST_CHECK_EQ(p, q);
return true;
}
static bool
QuaternionMiscellaneous_SanityChecks()
{
geom::Vector4d q {4.0, 1.0, 2.0, 3.0};
geom::Vector3d v {1.0, 2.0, 3.0};
double w = 4.0;
geom::Quaterniond p(q);
geom::Quaterniond u = p.unitQuaternion();
SCTEST_CHECK_EQ(p.axis(), v);
SCTEST_CHECK_DEQ(p.angle(), w);
SCTEST_CHECK(u.isUnitQuaternion());
return true;
}
static bool
QuaternionMiscellaneous_OutputStream()
{
geom::Quaternionf p {4.0, 1.0, 2.0, 3.0};
geom::Quaterniond q {4.0, 1.0, 2.0, 3.0};
stringstream ss;
ss << p;
SCTEST_CHECK_EQ(ss.str(), "4 + <1, 2, 3>");
ss.str("");
ss << q;
SCTEST_CHECK_EQ(ss.str(), "4 + <1, 2, 3>");
return true;
}
static bool
QuaternionMiscellanous_InitializerConstructor()
{
geom::Quaternionf p {1.0, 1.0, 1.0, 1.0};
geom::Quaternionf q(geom::Vector4f {1.0, 1.0, 1.0, 1.0});
SCTEST_CHECK_EQ(p, q);
SCTEST_CHECK_FEQ(p.norm(), (float)2.0);
return true;
}
int
main(void)
{
SimpleSuite ts;
ts.AddTest("Quaternion_SelfTest", Quaternion_SelfTest);
ts.AddTest("QuaternionMiscellanous_InitializerConstructor",
QuaternionMiscellanous_InitializerConstructor);
ts.AddTest("QuaternionMiscellaneous_SanityChecks",
QuaternionMiscellaneous_SanityChecks);
ts.AddTest("QuaternionMiscellaneous_OutputStream",
QuaternionMiscellaneous_OutputStream);
ts.AddTest("Quaterniond_Addition", Quaterniond_Addition);
ts.AddTest("Quaterniond_Conjugate", Quaterniond_Conjugate);
ts.AddTest("Quaterniond_Euler", Quaterniond_Euler);
ts.AddTest("Quaterniond_Identity", Quaterniond_Identity);
ts.AddTest("Quaterniond_Inverse", Quaterniond_Inverse);
ts.AddTest("Quaterniond_Norm", Quaterniond_Norm);
ts.AddTest("Quaterniond_Product", Quaterniond_Product);
ts.AddTest("Quaterniond_Rotate", Quaterniond_Rotate);
ts.AddTest("Quaterniond_ShortestSLERP", Quaterniond_ShortestSLERP);
ts.AddTest("Quaterniond_ShortestSLERP2", Quaterniond_ShortestSLERP2);
ts.AddTest("Quaterniond_Unit", Quaterniond_Unit);
ts.AddTest("Quaterniond_UtilityCreator", Quaterniond_UtilityCreator);
ts.AddTest("Quaternionf_Addition", Quaternionf_Addition);
ts.AddTest("Quaternionf_Conjugate", Quaternionf_Conjugate);
ts.AddTest("Quaternionf_Euler", Quaternionf_Euler);
ts.AddTest("Quaternionf_Identity", Quaternionf_Identity);
ts.AddTest("Quaternionf_Inverse", Quaternionf_Inverse);
ts.AddTest("Quaternionf_Norm", Quaternionf_Norm);
ts.AddTest("Quaternionf_Product", Quaternionf_Product);
ts.AddTest("Quaternionf_Rotate", Quaternionf_Rotate);
ts.AddTest("Quaternionf_ShortestSLERP", Quaternionf_ShortestSLERP);
ts.AddTest("Quaternionf_ShortestSLERP2", Quaternionf_ShortestSLERP2);
ts.AddTest("Quaternionf_Unit", Quaternionf_Unit);
ts.AddTest("Quaternionf_UtilityCreator", Quaternionf_UtilityCreator);
if (ts.Run()) {
std::cout << "OK" << std::endl;
return 0;
}
else {
auto r = ts.GetReport();
std::cerr << r.Failing << "/" << r.Total << " tests failed." << std::endl;
return 1;
}
}