Fix flags usage and make Commander Flags capable.

- Programs should exit on Flags parse error.
- Commander now accepts a string vector for interop with Flags.
This commit is contained in:
2023-10-21 19:45:07 -07:00
parent 1420ff343d
commit 8b63985ac9
17 changed files with 127 additions and 99 deletions

View File

@@ -60,7 +60,7 @@ namespace geom {
template<typename T>
class Quaternion {
public:
/// \brief Construct an identity MakeQuaternion.
/// \brief Construct an identity Quaternion.
Quaternion() : v(Vector<T, 3>{0.0, 0.0, 0.0}), w(1.0)
{
scmp::DefaultEpsilon(this->eps);
@@ -68,7 +68,7 @@ public:
};
/// \brief Construct a MakeQuaternion with an Axis and Angle of
/// \brief Construct a Quaternion with an Axis and Angle of
/// rotation.
///
/// A Quaternion may be initialised with a Vector<T, 3> Axis
@@ -119,7 +119,7 @@ public:
}
/// \brief Set the comparison tolerance for this MakeQuaternion.
/// \brief Set the comparison tolerance for this Quaternion.
///
/// \param epsilon A tolerance value.
void
@@ -130,9 +130,9 @@ public:
}
/// \brief Return the Axis of rotation of this MakeQuaternion.
/// \brief Return the Axis of rotation of this Quaternion.
///
/// \return The Axis of rotation of this MakeQuaternion.
/// \return The Axis of rotation of this Quaternion.
Vector<T, 3>
Axis() const
{
@@ -140,9 +140,9 @@ public:
}
/// \brief Return the Angle of rotation of this MakeQuaternion.
/// \brief Return the Angle of rotation of this Quaternion.
///
/// \return the Angle of rotation of this MakeQuaternion.
/// \return the Angle of rotation of this Quaternion.
T
Angle() const
{
@@ -152,7 +152,7 @@ public:
/// \brief Compute the Dot product of two quaternions.
///
/// \param other Another MakeQuaternion.
/// \param other Another Quaternion.
/// \return The Dot product between the two quaternions.
T
Dot(const Quaternion<T> &other) const
@@ -166,7 +166,7 @@ public:
}
/// \brief Compute the Norm of a MakeQuaternion.
/// \brief Compute the Norm of a Quaternion.
///
/// Treating the Quaternion as a Vector<T, 4>, this is the same
/// process as computing the Magnitude.
@@ -186,18 +186,18 @@ public:
}
/// \brief Return the unit MakeQuaternion.
/// \brief Return the unit Quaternion.
///
/// \return The unit MakeQuaternion.
/// \return The unit Quaternion.
Quaternion
UnitQuaternion()
{
return *this / this->Norm();
}
/// \brief Compute the Conjugate of a MakeQuaternion.
/// \brief Compute the Conjugate of a Quaternion.
///
/// \return The Conjugate of this MakeQuaternion.
/// \return The Conjugate of this Quaternion.
Quaternion
Conjugate() const
{
@@ -205,9 +205,9 @@ public:
}
/// \brief Compute the Inverse of a MakeQuaternion.
/// \brief Compute the Inverse of a Quaternion.
///
/// \return The Inverse of this MakeQuaternion.
/// \return The Inverse of this Quaternion.
Quaternion
Inverse() const
{
@@ -217,9 +217,9 @@ public:
}
/// \brief Determine whether this is an identity MakeQuaternion.
/// \brief Determine whether this is an identity Quaternion.
///
/// \return true if this is an identity MakeQuaternion.
/// \return true if this is an identity Quaternion.
bool
IsIdentity() const {
return this->v.IsZero() &&
@@ -227,22 +227,23 @@ public:
}
/// \brief Determine whether this is a unit MakeQuaternion.
/// \brief Determine whether this is a unit Quaternion.
///
/// \return true if this is a unit MakeQuaternion.
/// \return true if this is a unit Quaternion.
bool
IsUnitQuaternion() const
{
return scmp::WithinTolerance(this->Norm(), (T) 1.0, this->eps);
auto normal = this->Norm();
return scmp::WithinTolerance(normal, (T) 1.0, this->eps);
}
/// \brief Convert to Vector form.
///
/// Return the MakeQuaternion as a Vector<T, 4>, with the Axis of
/// Return the Quaternion as a Vector<T, 4>, with the Axis of
/// rotation followed by the Angle of rotation.
///
/// \return A vector representation of the MakeQuaternion.
/// \return A vector representation of the Quaternion.
Vector<T, 4>
AsVector() const
{
@@ -250,7 +251,7 @@ public:
}
/// \brief Rotate Vector vr about this MakeQuaternion.
/// \brief Rotate Vector vr about this Quaternion.
///
/// \param vr The vector to be rotated.
/// \return The rotated vector.
@@ -261,9 +262,9 @@ public:
}
/// \brief Return Euler angles for this MakeQuaternion.
/// \brief Return Euler angles for this Quaternion.
///
/// Return the Euler angles for this MakeQuaternion as a vector of
/// Return the Euler angles for this Quaternion as a vector of
/// <yaw, pitch, roll>.
///
/// \warning Users of this function should watch out for gimbal
@@ -289,7 +290,7 @@ public:
/// \brief Quaternion addition.
///
/// \param other The MakeQuaternion to be added with this one.
/// \param other The Quaternion to be added with this one.
/// \return The result of adding the two quaternions together.
Quaternion
operator+(const Quaternion<T> &other) const
@@ -300,8 +301,8 @@ public:
/// \brief Quaternion subtraction.
///
/// \param other The MakeQuaternion to be subtracted from this one.
/// \return The result of subtracting the other MakeQuaternion from this one.
/// \param other The Quaternion to be subtracted from this one.
/// \return The result of subtracting the other Quaternion from this one.
Quaternion
operator-(const Quaternion<T> &other) const
{
@@ -312,7 +313,7 @@ public:
/// \brief Scalar multiplication.
///
/// \param k The scaling value.
/// \return A scaled MakeQuaternion.
/// \return A scaled Quaternion.
Quaternion
operator*(const T k) const
{
@@ -323,7 +324,7 @@ public:
/// \brief Scalar division.
///
/// \param k The scalar divisor.
/// \return A scaled MakeQuaternion.
/// \return A scaled Quaternion.
Quaternion
operator/(const T k) const
{
@@ -334,11 +335,11 @@ public:
/// \brief Quaternion Hamilton multiplication with a three-
/// dimensional vector.
///
/// This is done by treating the vector as a pure MakeQuaternion
/// This is done by treating the vector as a pure Quaternion
/// (e.g. with an Angle of rotation of 0).
///
/// \param vector The vector to multiply with this MakeQuaternion.
/// \return The Hamilton product of the MakeQuaternion and vector.
/// \param vector The vector to multiply with this Quaternion.
/// \return The Hamilton product of the Quaternion and vector.
Quaternion
operator*(const Vector<T, 3> &vector) const
{
@@ -349,7 +350,7 @@ public:
/// \brief Quaternion Hamilton multiplication.
///
/// \param other The other MakeQuaternion to multiply with this one.
/// \param other The other Quaternion to multiply with this one.
/// @result The Hamilton product of the two quaternions.
Quaternion
operator*(const Quaternion<T> &other) const
@@ -365,7 +366,7 @@ public:
/// \brief Quaternion equivalence.
///
/// \param other The MakeQuaternion to check equality against.
/// \param other The Quaternion to check equality against.
/// \return True if the two quaternions are equal within their tolerance.
bool
operator==(const Quaternion<T> &other) const
@@ -377,7 +378,7 @@ public:
/// \brief Quaternion non-equivalence.
///
/// \param other The MakeQuaternion to check inequality against.
/// \param other The Quaternion to check inequality against.
/// \return True if the two quaternions are unequal within their tolerance.
bool
operator!=(const Quaternion<T> &other) const
@@ -386,13 +387,13 @@ public:
}
/// \brief Output a MakeQuaternion to a stream in the form
/// \brief Output a Quaternion to a stream in the form
/// `a + <i, j, k>`.
///
/// \todo improve the formatting.
///
/// \param outs An output stream
/// \param q A MakeQuaternion
/// \param q A Quaternion
/// \return The output stream
friend std::ostream &
operator<<(std::ostream &outs, const Quaternion<T> &q)
@@ -438,41 +439,41 @@ typedef Quaternion<double> Quaterniond;
/// \brief Convenience Quaternion construction function.
///
/// Return a float MakeQuaternion scaled appropriately from a vector and
/// Return a float Quaternion scaled appropriately from a vector and
/// Angle, e.g.
/// angle = cos(Angle / 2),
/// Axis.UnitVector() * sin(Angle / 2).
///
/// \param axis The Axis of rotation.
/// \param angle The Angle of rotation.
/// \return A MakeQuaternion.
/// \return A Quaternion.
/// \relatesalso Quaternion
Quaternionf MakeQuaternion(Vector3F axis, float angle);
/// \brief Convience Quaternion construction function.
///
/// Return a double MakeQuaternion scaled appropriately from a vector and
/// Return a double Quaternion scaled appropriately from a vector and
/// Angle, e.g.
/// Angle = cos(Angle / 2),
/// Axis.UnitVector() * sin(Angle / 2).
///
/// \param axis The Axis of rotation.
/// \param angle The Angle of rotation.
/// \return A MakeQuaternion.
/// \return A Quaternion.
/// \relatesalso Quaternion
Quaterniond MakeQuaternion(Vector3D axis, double angle);
/// \brief Convience Quaternion construction function.
///
/// Return a double MakeQuaternion scaled appropriately from a vector and
/// Return a double Quaternion scaled appropriately from a vector and
/// Angle, e.g.
/// Angle = cos(Angle / 2),
/// Axis.UnitVector() * sin(Angle / 2).
///
/// \param axis The Axis of rotation.
/// \param angle The Angle of rotation.
/// \return A MakeQuaternion.
/// \return A Quaternion.
/// \relatesalso Quaternion
template <typename T>
Quaternion<T>
@@ -513,8 +514,8 @@ Quaterniond DoubleQuaternionFromEuler(Vector3D euler);
/// fraction of the distance between them.
///
/// \tparam T
/// \param p The starting MakeQuaternion.
/// \param q The ending MakeQuaternion.
/// \param p The starting Quaternion.
/// \param q The ending Quaternion.
/// \param t The fraction of the distance between the two quaternions to
/// interpolate.
/// \return A Quaternion representing the linear interpolation of the
@@ -534,8 +535,8 @@ LERP(Quaternion<T> p, Quaternion<T> q, T t)
/// distance between them.
///
/// \tparam T
/// \param p The starting MakeQuaternion.
/// \param q The ending MakeQuaternion.Short
/// \param p The starting Quaternion.
/// \param q The ending Quaternion.
/// \param t The fraction of the distance between the two quaternions
/// to interpolate.
/// \return A Quaternion representing the shortest path between two