HamShield/inProgress/AFSK.cpp

739 lines
19 KiB
C++
Raw Normal View History

#include <Arduino.h>
#include "HamShield.h"
#include "SimpleFIFO.h"
#include <util/atomic.h>
#define PHASE_BIT 8
#define PHASE_INC 1
#define PHASE_MAX (SAMPLEPERBIT * PHASE_BIT)
#define PHASE_THRES (PHASE_MAX / 2)
#define BIT_DIFFER(bitline1, bitline2) (((bitline1) ^ (bitline2)) & 0x01)
#define EDGE_FOUND(bitline) BIT_DIFFER((bitline), (bitline) >> 1)
#define PPOOL_SIZE 2
2015-07-02 00:25:59 +00:00
#define AFSK_SPACE 2200
#define AFSK_MARK 1200
// Timers
volatile unsigned long lastTx = 0;
volatile unsigned long lastTxEnd = 0;
volatile unsigned long lastRx = 0;
#define T_BIT ((unsigned int)(SAMPLERATE/BITRATE))
#ifdef PACKET_PREALLOCATE
SimpleFIFO<AFSK::Packet *,PPOOL_SIZE> preallocPool;
AFSK::Packet preallocPackets[PPOOL_SIZE];
#endif
void AFSK::Encoder::process() {
// We're on the start of a byte position, so fetch one
if(bitPosition == 0) {
if(preamble) { // Still in preamble
currentByte = HDLC_PREAMBLE;
--preamble; // Decrement by one
} else {
if(!packet) { // We aren't on a packet, grab one
// Unless we already sent enough
if(maxTx-- == 0) {
stop();
lastTxEnd = millis();
return;
}
packet = pBuf.getPacket();
if(!packet) { // There actually weren't any
stop(); // Stop transmitting and return
lastTxEnd = millis();
return;
}
lastTx = millis();
currentBytePos = 0;
nextByte = HDLC_FRAME; // Our next output should be a frame boundary
hdlc = true;
}
// We ran out of actual data, provide an HDLC frame (idle)
if(currentBytePos == packet->len && nextByte == 0) {
// We also get here if nextByte isn't set, to handle empty frames
pBuf.freePacket(packet);
packet = pBuf.getPacket(); // Get the next, if any
//packet = NULL;
currentBytePos = 0;
nextByte = 0;
currentByte = HDLC_FRAME;
hdlc = true;
} else {
if(nextByte) {
// We queued up something other than the actual stream to be sent next
currentByte = nextByte;
nextByte = 0;
} else {
// Get the next byte to send, but if it's an HDLC frame, escape it
// and queue the real byte for the next cycle.
currentByte = packet->getByte();
if(currentByte == HDLC_FRAME) {
nextByte = currentByte;
currentByte = HDLC_ESCAPE;
} else {
currentBytePos++;
}
hdlc = false; // If we get here, it will be NRZI bit stuffed
}
}
}
}
// Pickup the last bit
currentBit = currentByte & 0x1;
if(lastZero == 5) {
currentBit = 0; // Force a 0 bit output
} else {
currentByte >>= 1; // Bit shift it right, for the next round
++bitPosition; // Note our increase in position
}
// To handle NRZI 5 bit stuffing, count the bits
if(!currentBit || hdlc)
lastZero = 0;
else
++lastZero;
// NRZI and AFSK uses toggling 0s, "no change" on 1
// So, if not a 1, toggle to the opposite tone
if(!currentBit)
currentTone = !currentTone;
2015-07-02 00:25:59 +00:00
if(currentTone == 0) {
PORTD |= _BV(7);
2015-07-02 00:25:59 +00:00
dds->setFrequency(AFSK_SPACE);
} else {
PORTD &= ~_BV(7);
2015-07-02 00:25:59 +00:00
dds->setFrequency(AFSK_MARK);
}
}
bool AFSK::Encoder::start() {
if(!done || sending) {
return false;
}
if(randomWait > millis()) {
return false;
}
// First real byte is a frame
currentBit = 0;
lastZero = 0;
bitPosition = 0;
//bitClock = 0;
preamble = 0b110000; // 6.7ms each, 23 = 153ms
done = false;
hdlc = true;
packet = 0x0; // No initial packet, find in the ISR
currentBytePos = 0;
maxTx = 3;
sending = true;
nextByte = 0;
2015-07-02 00:25:59 +00:00
dds->setFrequency(0);
dds->on();
return true;
}
void AFSK::Encoder::stop() {
randomWait = 0;
sending = false;
done = true;
dds->setFrequency(0);
2015-07-02 00:25:59 +00:00
dds->off();
}
AFSK::Decoder::Decoder() {
// Initialize the sampler delay line (phase shift)
//for(unsigned char i = 0; i < SAMPLEPERBIT/2; i++)
// delay_fifo.enqueue(0);
}
bool AFSK::HDLCDecode::hdlcParse(bool bit, SimpleFIFO<uint8_t,HAMSHIELD_AFSK_RX_FIFO_LEN> *fifo) {
bool ret = true;
demod_bits <<= 1;
demod_bits |= bit ? 1 : 0;
// Flag
if(demod_bits == HDLC_FRAME) {
fifo->enqueue(HDLC_FRAME);
rxstart = true;
currchar = 0;
bit_idx = 0;
return ret;
}
// Reset
if((demod_bits & HDLC_RESET) == HDLC_RESET) {
rxstart = false;
lastRx = millis();
return ret;
}
if(!rxstart) {
return ret;
}
// Stuffed?
if((demod_bits & 0x3f) == 0x3e)
return ret;
if(demod_bits & 0x01)
currchar |= 0x80;
if(++bit_idx >= 8) {
if(currchar == HDLC_FRAME ||
currchar == HDLC_RESET ||
currchar == HDLC_ESCAPE) {
fifo->enqueue(HDLC_ESCAPE);
}
fifo->enqueue(currchar & 0xff);
currchar = 0;
bit_idx = 0;
} else {
currchar >>= 1;
}
return ret;
}
template <typename T, int size>
class FastRing {
private:
T ring[size];
uint8_t position;
public:
FastRing(): position(0) {}
inline void write(T value) {
ring[(position++) & (size-1)] = value;
}
inline T read() const {
return ring[position & (size-1)];
}
inline T readn(uint8_t n) const {
return ring[(position + (~n+1)) & (size-1)];
}
};
// Create a delay line that's half the length of the bit cycle (-90 degrees)
FastRing<uint8_t,(T_BIT/2)> delayLine;
// Handle the A/D converter interrupt (hopefully quickly :)
void AFSK::Decoder::process(int8_t curr_sample) {
// Run the same through the phase multiplier and butterworth filter
iir_x[0] = iir_x[1];
iir_x[1] = ((int8_t)delayLine.read() * curr_sample) >> 2;
iir_y[0] = iir_y[1];
iir_y[1] = iir_x[0] + iir_x[1] + (iir_y[0] >> 1) + (iir_y[0]>>3) + (iir_y[0]>>5);
// Place this ADC sample into the delay line
delayLine.write(curr_sample);
// Shift the bit into place based on the output of the discriminator
sampled_bits <<= 1;
sampled_bits |= (iir_y[1] > 0) ? 1 : 0;
// If we found a 0/1 transition, adjust phases to track
if(EDGE_FOUND(sampled_bits)) {
if(curr_phase < PHASE_THRES)
curr_phase += PHASE_INC;
else
curr_phase -= PHASE_INC;
}
// Move ahead in phase
curr_phase += PHASE_BIT;
// If we've gone over the phase maximum, we should now have some data
if(curr_phase >= PHASE_MAX) {
curr_phase %= PHASE_MAX;
found_bits <<= 1;
// If we have 3 bits or more set, it's a positive bit
register uint8_t bits = sampled_bits & 0x07;
if(bits == 0x07 || bits == 0x06 || bits == 0x05 || bits == 0x03) {
found_bits |= 1;
}
hdlc.hdlcParse(!EDGE_FOUND(found_bits), &rx_fifo); // Process it
}
}
// This routine uses a pre-allocated Packet structure
// to save on the memory requirements of the stream data
bool AFSK::Decoder::read() {
bool retVal = false;
if(!currentPacket) { // We failed a prior memory allocation
currentPacket = pBuf.makePacket(PACKET_MAX_LEN);
if(!currentPacket) // Still nothing
return false;
}
// While we have AFSK receive FIFO bytes...
while(rx_fifo.count()) {
// Grab the character
char c = rx_fifo.dequeue();
bool escaped = false;
if(c == HDLC_ESCAPE) { // We received an escaped byte, mark it
escaped = true;
// Do we want to keep HDLC_ESCAPEs in the packet?
//currentPacket->append(HDLC_ESCAPE); // Append without FCS
c = rx_fifo.dequeue(); // Reset to the next character
}
// Append all the bytes
// This will include unescaped HDLC_FRAME bytes
if(c != HDLC_FRAME || escaped) // Append frame if it is escaped
currentPacket->appendFCS(c); // Escaped characters and all else go into FCS
if(currentPacket->len > PACKET_MAX_LEN) {
// We've now gone too far and picked up far too many bytes
// Cancel this frame, start back at the beginning
currentPacket->clear();
continue;
}
// We have a frame boundary, if it isn't escaped
// If it's escaped, it was part of the data stream
if(c == HDLC_FRAME && !escaped) {
if(!currentPacket->len) {
currentPacket->clear(); // There wasn't any data, restart stream
continue;
} else {
// We have some bytes in stream, check it meets minimum payload length
// Min payload is 1 (flag) + 14 (addressing) + 2 (control/PID) + 1 (flag)
if(currentPacket->len >= 16) {
// We should end up here with a valid FCS due to the appendFCS
if(currentPacket->crcOK()) { // Magic number for the CRC check passing
// Valid frame, so, let's filter for control + PID
// Maximum search distance is 71 bytes to end of the address fields
// Skip the HDLC frame start
bool filtered = false;
for(unsigned char i = 0; i < (currentPacket->len<70?currentPacket->len:71); ++i) {
if((currentPacket->getByte() & 0x1) == 0x1) { // Found a byte with LSB set
// which marks the final address payload
// next two bytes should be the control/PID
//if(currentPacket->getByte() == 0x03 && currentPacket->getByte() == 0xf0) {
filtered = true;
break; // Found it
//}
}
}
if(!filtered) {
// Frame wasn't one we care about, discard
currentPacket->clear();
continue;
}
// It's all done and formatted, ready to go
currentPacket->ready = 1;
if(!pBuf.putPacket(currentPacket)) // Put it in the receive FIFO
pBuf.freePacket(currentPacket); // Out of FIFO space, so toss it
// Allocate a new one of maximum length
currentPacket = pBuf.makePacket(PACKET_MAX_LEN);
retVal = true;
}
}
}
// Restart the stream
currentPacket->clear();
}
}
return retVal; // This is true if we parsed a packet in this flow
}
void AFSK::Decoder::start() {
// Do this in start to allocate our first packet
currentPacket = pBuf.makePacket(PACKET_MAX_LEN);
2015-07-02 00:25:59 +00:00
/* ASSR &= ~(_BV(EXCLK) | _BV(AS2));
// Do non-inverting PWM on pin OC2B (arduino pin 3) (p.159).
// OC2A (arduino pin 11) stays in normal port operation:
// COM2B1=1, COM2B0=0, COM2A1=0, COM2A0=0
// Mode 1 - Phase correct PWM
TCCR2A = (TCCR2A | _BV(COM2B1)) & ~(_BV(COM2B0) | _BV(COM2A1) | _BV(COM2A0)) |
_BV(WGM21) | _BV(WGM20);
// No prescaler (p.162)
TCCR2B = (TCCR2B & ~(_BV(CS22) | _BV(CS21))) | _BV(CS20) | _BV(WGM22);
OCR2A = pow(2,COMPARE_BITS)-1;
OCR2B = 0;
// Configure the ADC and Timer1 to trigger automatic interrupts
TCCR1A = 0;
TCCR1B = _BV(CS11) | _BV(WGM13) | _BV(WGM12);
ICR1 = ((F_CPU / 8) / REFCLK) - 1;
ADMUX = _BV(REFS0) | _BV(ADLAR) | 0; // Channel 0, shift result left (ADCH used)
DDRC &= ~_BV(0);
PORTC &= ~_BV(0);
DIDR0 |= _BV(0);
ADCSRB = _BV(ADTS2) | _BV(ADTS1) | _BV(ADTS0);
2015-07-02 00:25:59 +00:00
ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADATE) | _BV(ADIE) | _BV(ADPS2); // | _BV(ADPS0); */
}
AFSK::PacketBuffer::PacketBuffer() {
nextPacketIn = 0;
nextPacketOut = 0;
inBuffer = 0;
for(unsigned char i = 0; i < PACKET_BUFFER_SIZE; ++i) {
packets[i] = 0x0;
}
#ifdef PACKET_PREALLOCATE
for(unsigned char i = 0; i < PPOOL_SIZE; ++i) {
// Put some empty packets in the FIFO
preallocPool.enqueue(&preallocPackets[i]);
}
#endif
}
unsigned char AFSK::PacketBuffer::readyCount() volatile {
unsigned char i;
unsigned int cnt = 0;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
for(i = 0; i < PACKET_BUFFER_SIZE; ++i) {
if(packets[i] && packets[i]->ready)
++cnt;
}
}
return cnt;
}
// Return NULL on empty packet buffers
AFSK::Packet *AFSK::PacketBuffer::getPacket() volatile {
unsigned char i = 0;
AFSK::Packet *p = NULL;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
if(inBuffer == 0) {
return 0x0;
}
do {
p = packets[nextPacketOut];
if(p) {
packets[nextPacketOut] = 0x0;
--inBuffer;
}
nextPacketOut = ++nextPacketOut % PACKET_BUFFER_SIZE;
++i;
} while(!p && i<PACKET_BUFFER_SIZE);
// Return whatever we found, if anything
}
return p;
}
//void Packet::init(uint8_t *buf, unsigned int dlen, bool freeData) {
void AFSK::Packet::init(unsigned short dlen) {
//data = (unsigned char *)buf;
ready = 0;
#ifdef PACKET_PREALLOCATE
freeData = 0;
maxLen = PACKET_MAX_LEN; // Put it here instead
#else
freeData = 1;
dataPtr = (uint8_t *)malloc(dlen+16);
maxLen = dlen; // Put it here instead
#endif
type = PACKET_STATIC;
len = 0; // We had a length, but don't put it here.
dataPos = dataPtr;
readPos = dataPtr;
fcs = 0xffff;
}
// Allocate a new packet with a data buffer as set
AFSK::Packet *AFSK::PacketBuffer::makePacket(unsigned short dlen) {
AFSK::Packet *p;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
//Packet *p = findPooledPacket();
#ifdef PACKET_PREALLOCATE
if(preallocPool.count())
p = preallocPool.dequeue();
else p = NULL;
#else
p = new Packet(); //(Packet *)malloc(sizeof(Packet));
#endif
if(p) // If allocated
p->init(dlen);
}
return p; // Passes through a null on failure.
}
// Free a packet struct, mainly convenience
void AFSK::PacketBuffer::freePacket(Packet *p) {
if(!p)
return;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
#ifdef PACKET_PREALLOCATE
preallocPool.enqueue(p);
#else
p->free();
/*unsigned char i;
for(i = 0; i < PPOOL_SIZE; ++i)
if(p == &(pPool[i]))
break;
if(i < PPOOL_SIZE)
pStatus &= ~(1<<i);*/
delete p;
#endif
}
}
// Put a packet onto the buffer array
bool AFSK::PacketBuffer::putPacket(Packet *p) volatile {
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
if(inBuffer >= PACKET_BUFFER_SIZE) {
return false;
}
packets[nextPacketIn] = p;
nextPacketIn = ++nextPacketIn % PACKET_BUFFER_SIZE;
++inBuffer;
}
return true;
}
// Print a single byte to the data array
size_t AFSK::Packet::write(uint8_t c) {
return (appendFCS(c)?1:0);
}
size_t AFSK::Packet::write(const uint8_t *ptr, size_t len) {
size_t i;
for(i = 0; i < len; ++i)
if(!appendFCS(ptr[i]))
break;
return i;
}
// Add a callsign, flagged as source, destination, or digi
// Also tell the routine the SSID to use and if this is the final callsign
size_t AFSK::Packet::appendCallsign(const char *callsign, uint8_t ssid, bool final) {
uint8_t i;
for(i = 0; i < strlen(callsign) && i < 6; i++) {
appendFCS(callsign[i]<<1);
}
if(i < 6) {
for(;i<6;i++) {
appendFCS(' '<<1);
}
}
uint8_t ssidField = (ssid&0xf) << 1;
// TODO: Handle digis in the address C bit
if(final) {
ssidField |= 0b01100001;
} else {
ssidField |= 0b11100000;
}
appendFCS(ssidField);
}
#ifdef PACKET_PARSER
// Process the AX25 frame and turn it into a bunch of useful strings
bool AFSK::Packet::parsePacket() {
uint8_t *d = dataPtr;
int i;
// First 7 bytes are destination-ssid
for(i = 0; i < 6; i++) {
dstCallsign[i] = (*d++)>>1;
if(dstCallsign[i] == ' ') {
dstCallsign[i] = '\0';
}
}
dstCallsign[6] = '\0';
dstSSID = ((*d++)>>1) & 0xF;
// Next 7 bytes are source-ssid
for(i = 0; i < 6; i++) {
srcCallsign[i] = (*d++)>>1;
if(srcCallsign[i] == ' ') {
srcCallsign[i] = '\0';
}
}
srcCallsign[6] = '\0';
srcSSID = *d++; // Don't shift yet, we need the LSB
digipeater[0][0] = '\0'; // Set null in case we have none anyway
if((srcSSID & 1) == 0) { // Not the last address field
int digi; // Which digi we're on
for(digi = 0; digi < 8; digi++) {
for(i = 0; i < 6; i++) {
digipeater[digi][i] = (*d++)>>1;
if(digipeater[digi][i] == ' ') {
digipeater[digi][i] = '\0';
}
}
uint8_t last = (*d) & 1;
digipeaterSSID[digi] = ((*d++)>>1) & 0xF;
if(last == 1)
break;
}
digipeater[digi][6] = '\0';
for(digi += 1; digi<8; digi++) { // Empty out the rest of them
digipeater[digi][0] = '\0';
}
}
// Now handle the SSID itself
srcSSID >>= 1;
srcSSID &= 0xF;
// After the address parsing, we end up on the control field
control = *d++;
// We have a PID if control type is U or I
// Control & 1 == 0 == I frame
// Control & 3 == 3 == U frame
if((control & 1) == 0 || (control & 3) == 3)
pid = *d++;
else pid = 0;
// If there is no PID, we have no data
if(!pid) {
iFrameData = NULL;
return true;
}
// At this point, we've walked far enough along that data is just at d
iFrameData = d;
// Cheat a little by setting the first byte of the FCS to 0, making it a string
// First FCS byte is found at -2, HDLC flags aren't in this buffer
dataPtr[len-2] = '\0';
return true;
}
#endif
void AFSK::Packet::printPacket(Stream *s) {
uint8_t i;
#ifdef PACKET_PARSER
if(!parsePacket()) {
s->print(F("Packet not valid"));
return;
}
s->print(srcCallsign);
if(srcSSID > 0) {
s->write('-');
s->print(srcSSID);
}
s->print(F(" > "));
s->print(dstCallsign);
if(dstSSID > 0) {
s->write('-');
s->print(dstSSID);
}
s->write(' ');
if(digipeater[0][0] != '\0') {
s->print(F("via "));
for(i = 0; i < 8; i++) {
if(digipeater[i][0] == '\0')
break;
s->print(digipeater[i]);
if(digipeaterSSID[i] != 0) {
s->write('-');
s->print(digipeaterSSID[i]);
}
if((digipeaterSSID[i] & _BV(7)) == _BV(7)) {
s->write('*'); // Digipeated already
}
// If we might have more, check to add a comma
if(i < 7 && digipeater[i+1][0] != '\0') {
s->write(',');
}
s->write(' ');
}
}
// This is an S frame, we can only print control info
if(control & 3 == 1) {
switch((control>>2)&3) {
case 0:
s->print(F("RR"));
break;
case 1:
s->print(F("RNR"));
break;
case 2:
s->print(F("REJ"));
break;
case 3: // Undefined
s->print(F("unk"));
break;
}
// Use a + to indicate poll bit
if(control & _BV(4) == _BV(4)) {
s->write('+');
}
} else if((control & 3) == 3) { // U Frame
s->print(F("U("));
s->print(control, HEX);
s->write(',');
s->print(pid, HEX);
s->print(F(") "));
} else if((control & 1) == 0) { // I Frame
s->print(F("I("));
s->print(control, HEX);
s->write(',');
s->print(pid, HEX);
s->print(F(") "));
}
s->print(F("len "));
s->print(len);
s->print(F(": "));
s->print((char *)iFrameData);
s->println();
#else // no packet parser, do a rudimentary print
// Second 6 bytes are source callsign
for(i=7; i<13; i++) {
s->write(*(dataPtr+i)>>1);
}
// SSID
s->write('-');
s->print((*(dataPtr+13) >> 1) & 0xF);
s->print(F(" -> "));
// First 6 bytes are destination callsign
for(i=0; i<6; i++) {
s->write(*(dataPtr+i)>>1);
}
// SSID
s->write('-');
s->print((*(dataPtr+6) >> 1) & 0xF);
// Control/PID next two bytes
// Skip those, print payload
for(i = 15; i<len; i++) {
s->write(*(dataPtr+i));
}
#endif
}
// Determine what we want to do on this ADC tick.
void AFSK::timer() {
static uint8_t tcnt = 0;
if(++tcnt == T_BIT && encoder.isSending()) {
PORTD |= _BV(6);
// Only run the encoder every 8th tick
// This is actually DDS RefClk / 1200 = 8, set as T_BIT
// A different refclk needs a different value
encoder.process();
tcnt = 0;
PORTD &= ~_BV(6);
} else {
decoder.process(((int8_t)(ADCH - 128)));
}
}
2015-07-02 00:25:59 +00:00
void AFSK::start(DDS *dds) {
afskEnabled = true;
2015-07-02 00:25:59 +00:00
encoder.setDDS(dds);
decoder.start();
}